
1

Domain Transfer
CMPT 729 G100

Jason Peng



2

Overview

• Domain Transfer

• System Identification

• Domain Randomization

• Domain Adaptation
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Learning in Simulation
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Real Robots
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Real Robots

≈



6

Real Robots
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Real-World RL

Challenges:

• Sample complexity

• Safety

• State estimation

• Reward calculation

• Episodic resets

• Etc.

The Ingredients of Real-World Robotic Reinforcement Learning
[Zhu et al. 2020]
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Safety

Random exploration can
be dangerous
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Sim-to-Real Transfer

Simulation

Real WorldSimulation

(Source Domain) (Target Domain)
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Reality Gap

Simulation

coarse approximation
of real world

Real WorldSimulation

(Source Domain) (Target Domain)
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System Identification



13

System Identification

Idea: Build a more accurate simulator

actuator model
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Actuators

Actuator
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Actuators

Actuator
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Actuators

Complex interaction between
software and hardware

Actuator
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System Identification

Idea: Build a more accurate simulator

Sim-to-Real: Learning Agile Locomotion For Quadruped Robots
[Tan et al. 2018]

Actuator Model
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System Identification

Sim-to-Real: Learning Agile Locomotion For Quadruped Robots
[Tan et al. 2018]
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System Identification

Idea: Build a more accurate simulator

• High-fidelity simulators can be hard to

build and computationally expensive.

• Can we improve simulator with data?

Actuator Model
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Actuators

Learn actuator model
from data

Actuator
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Actuator Model

Learning Agile and Dynamic Motor Skills for Legged Robots
[Hwangbo et al. 2019]

Dataset
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Actuator Model

Learning Agile and Dynamic Motor Skills for Legged Robots
[Hwangbo et al. 2019]

actuator model
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Actuator Model

Learning Agile and Dynamic Motor Skills for Legged Robots
[Hwangbo et al. 2019]
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System Identification

Data-Augmented Contact Model for Rigid Body Simulation
[Jiang et al. 2022]
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Actuator Model

change in state

action
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Actuator Model

dynamics model

Why not learn the whole simulator?
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Model-Based RL

DayDreamer: World Models for Physical Robot Learning
[Wu et al. 2022]
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Dynamics Models

System ID

• Learn subset of the dynamics

• Fewer parameters

• More domain knowledge

• Better generalization

Model-Based RL

• Learn full dynamics

• More parameters

• Less domain knowledge

• More prone to OOD errors
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Domain Randomization
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Domain Randomization

• Developing accurate simulators can be very difficult
• Real world has a lot of unmodeled effects

Domain Randomization:

• instead of developing more accurate simulators, develop more robust
policies
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Domain Randomization

mass?

friction?

motor strength?

inertia?

motor friction?
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Domain Randomization

• Simulate potential variations in the dynamics

• Train policy to be robust to these variations

mass

friction

motor strength

inertia

motor friction
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Domain Randomization
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Domain Randomization

dynamics parameters
(e.g. mass, inertia, friction, etc.)
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Domain Randomization

ground-truth
dynamics parameters
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Domain Randomization

ground-truth
dynamics parameters

Mass
Ground-truth:
Estimate: 
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Domain Randomization

Mass
Ground-truth:
Estimate: 

randomization
distribution
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Domain Randomization

real-world dynamics
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Domain Randomization

Optimize performance across
uncertain dynamics
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Domain Randomization

Sim-to-Real Transfer of Robotic Control with Dynamics Randomization
[Peng et al. 2018]

Simulation Real World
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Domain Randomization

Simulation Real World

Reinforcement Learning for Robust Parameterized Locomotion Control of Bipedal Robots
[Li et al. 2021]
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Robust Policies

Reinforcement Learning for Robust Parameterized Locomotion Control of Bipedal Robots
[Li et al. 2021]
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Randomization Distribution

Diversity > Accuracy:

• Use a sufficiently large randomization range, such that the policy can 
cope with variations in real-world dynamics (even unmodeled effects)

• Adapt randomization distribution with real-world data

How to pick randomization
distribution?
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Adaptive Domain Randomization

Closing the Sim-to-Real Loop: Adapting Simulation Randomization with Real World Experience
[Chebotar et al. 2019]

Simulation Real World
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Visual Navigation

CAD2RL: Real Single-Image Flight Without a Single Real Image
[Sadeghi et al. 2016]
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Visual Navigation

CAD2RL: Real Single-Image Flight Without a Single Real Image
[Sadeghi et al. 2016]
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Visual Randomization

CAD2RL: Real Single-Image Flight Without a Single Real Image
[Sadeghi et al. 2016]
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Visual Navigation

CAD2RL: Real Single-Image Flight Without a Single Real Image
[Sadeghi et al. 2016]

Camera View Third-Person View
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Over-Conservatism

Randomization can lead to 
overly conservative behaviors

Robustness
(more randomization)

Optimality
(less randomization)



50

Over-Conservatism
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Over-Conservatism

There may be no single policy
that is optimal for all environments
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Domain Adaptation
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Domain Adaptation

• Adjust behavior of the policy according to environment

• Online system identification

• Adaptive strategy

• Finetuning
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Amortized Models
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Amortized Models

• Directly condition policy on dynamics parameters

• Transfer to new environment:
• Identify dynamics parameters that best characterizes new environment
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Universal Policies

mass

friction

motor strength

inertia

motor friction
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Universal Policies

mass
inertia
friction
motor strength
motor friction
Etc.
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Universal Policies



59

Universal Policies

System ID
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Learning SystemID

Forward-dynamics:

Inverse-dynamics:

System identification:
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Learning SystemID



62

Online System Identification
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Online System Identification
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Online System Identification

Preparing for the Unknown: Learning a Universal Policy with Online System Identification
[Yu et al. 2017]
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Online System Identification

Preparing for the Unknown: Learning a Universal Policy with Online System Identification
[Yu et al. 2017]

Friction: 0.9 Friction: 0.55 
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Online System Identification

Preparing for the Unknown: Learning a Universal Policy with Online System Identification
[Yu et al. 2017]

Friction: 0.9 Friction: 0.55 
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Aliasing

• can be very high dimensional (100s of parameters)

• Different settings of the parameters can have similar effects (i.e. aliasing)
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Strategies

Parameters that lead to the same dynamics
entails the same optimal strategy
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Strategies
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Strategies

strategy

train end-to-end
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Latent Strategies

latent strategy
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Transfer

?
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Transfer

directly search
for a strategy
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Transfer

use derivative-free optimizer
(e.g. random search, CEM, PG, etc)
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Domain Adaptation

Reference Real Robot
(Before Adaptation)

Real Robot
(After Adaptation)

Learning Agile Robotic Locomotion Skills by Imitating Animals
[Peng et al. 2020]



76

Domain Adaptation

Reference Real Robot
(Before Adaptation)

Real Robot
(After Adaptation)

Learning Agile Robotic Locomotion Skills by Imitating Animals
[Peng et al. 2020]
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Domain Adaptation

Learning Agile Robotic Locomotion Skills by Imitating Animals
[Peng et al. 2020]

~5 mins
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Domain Adaptation

Learning Agile Robotic Locomotion Skills by Imitating Animals
[Peng et al. 2020]

Reference Real Robot
(Before Adaptation)

Real Robot
(After Adaptation)
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Domain Adaptation

Learning Agile Robotic Locomotion Skills by Imitating Animals
[Peng et al. 2020]
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Online Strategy Identification

?
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Online Strategy Identification
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Online Strategy Identification
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Terrain Adaptation

Learning Quadrupedal Locomotion Over Challenging Terrain
[Lee et al. 2020]
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Terrain Adaptation

Learning Quadrupedal Locomotion Over Challenging Terrain
[Lee et al. 2020]
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Legged Locomotion

RMA: Rapid Motor Adaptation for Legged Robots
[Kumar et al. 2022]
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Adaptive Strategies

• Fast adaptation (online methods: few seconds)

• Need to design rich training environment to learn versatile strategies

What if none of the
strategies work?
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Domain Adaptation

low-dimensional
+ restrictive
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Domain Adaptation

RL finetuning

high dimensional
+ flexible
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Finetuning

~1 month
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Finetuning

Real WorldSimulation

(Source Domain) (Target Domain)

Finetuning

SAC, REDQ, DroQ
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Real-World Finetuning

Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World
[Smith et al. 2022]
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Real-World Finetuning

Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World
[Smith et al. 2022]
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Real-World Finetuning

Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World
[Smith et al. 2022]
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Real-World Finetuning

Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World
[Smith et al. 2022]
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Real-World Finetuning

Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World
[Smith et al. 2022]
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Real-World Finetuning

Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World
[Smith et al. 2022]

(~1 hour)
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Summary

• Domain Transfer

• System Identification

• Domain Randomization

• Domain Adaptation

In practice: There is no silver bullet. Often need to combine multiple 
techniques for successful transfer.
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