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Overview

• Exploration Exploitation Tradeoff

• Dense vs Sparse Rewards

• Intrinsic Motivation

• Count-Based Exploration

• Surprise Maximization
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Need to try new actions in case they are better

Exploration-Exploitation
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Exploration-Exploitation

Keep going to the same restaurant Try new restaurant
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Oil Drilling

Drill at best known location Drill at a new location
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Ad Recommendation

Show most successful ad Show a different ad



7

-greedy exploration:

Boltzmann exploration:

Gaussian policy:

Simple Exploration Strategies

Good action coverage

Bad state coverage

✓


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Simple Exploration Strategies
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Simple Exploration Strategies
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Simple Exploration Strategies
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• Reward function guides policy towards better actions

• Structure of reward function can have dramatic impact on exploration 
and performance
• Well-shaped reward function: hard tasks can be made easy

• Poorly shaped reward function: easy tasks can be made almost impossible

Reward Functions
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• Dense reward
• Non-zero reward at every timestep reflecting progress towards goal

• Sparse reward
• Agent receives nonzero reward only when goal is completed

Reward Functions
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Non-zero reward at every timestep

reflecting progress towards goal

Dense Reward
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Agent receives nonzero reward only

when goal is completed

Sparse Reward
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Reward Functions
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Dense Rewards
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Dense Rewards
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Dense Rewards
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Sparse Rewards

0 0 0 0 0 0 0 0 1
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Sparse Rewards

0 0 0 0 0 0 0 0 1
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Sparse Rewards

0 0 0 0 0 0 0 0 1
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Sparse Rewards

0 0 0 0 0 0 0 0 1
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Sparse Rewards

0 0 0 0 0 0 0 0 1
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Sparse Rewards

0 0 0 0 0 0 0 0 1
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Sparse Rewards

Random exploration can be very inefficient for long horizon tasks
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Long Horizon Tasks

Overcoming Exploration in Reinforcement Learning with Demonstrations
[Nair et al. 2018]



27

Dense reward

✓Frequent feedback (faster learning)

✓Easier exploration

 Shaping bias

 Harder to design

Dense vs Sparse Rewards

Sparse reward

 Infrequent feedback (slower learning)

 Harder exploration

✓Less shaping bias

✓Easier to design
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Dense reward

✓Frequent feedback (faster learning)

✓Better exploration

 Shaping bias

 Harder to design

Dense vs Sparse Rewards

Sparse reward

 Infrequent feedback (slower learning)

 Harder exploration

✓Less shaping bias

✓Easier to design
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Shaping Bias
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Shaping Bias
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Shaping Bias
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Shaping Bias
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Shaping Bias
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Shaping Bias
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Atari

Fairly Easy Almost Impossible
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Montezuma’s Revenge

• Very sparse reward

• +1: getting key

• +1: opening door

• RL algorithm has no idea what keys and doors 
are
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Montezuma’s Revenge

[Graphic Created by Ben Valdes]

https://atariage.com/2600/archives/strategy_MontezumasRevenge_Level1.html
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Better Exploration Strategies

• Agent needs to visit new states and try new actions to find optimal 
strategies

• Encourage coverage of both states and actions

relatively easy
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Better Exploration Strategies

• Agent needs to visit new states and try new actions to find optimal 
strategies

• Encourage coverage of both states and actions

much harder

encourage agent to
visit new states
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Intrinsic Motivation
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Intrinsic Motivation

Extrinsic reward

• from environment

• encourage agent to perform a given task

Intrinsic reward

• from the agent itself

• encourage agent to explore new states

Extrinsic Reward Intrinsic Reward
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Intrinsic Reward

• Nonstationary reward

• Low for frequently visited states

• High for rarely visited states
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Count-Based Exploration

Keep count           on how many times agent visited a particular state

Near-Bayesian Exploration in Polynomial Time
[Kolter and Ng 2009]

dense reward
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Count-Based Exploration

Keep count           on how many times agent visited a particular state

Near-Bayesian Exploration in Polynomial Time
[Kolter and Ng 2009]

What about large/
continuous states?
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State Hashing

#Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning
[Tang et al. 2017]

#

Table

Count_0

Count_1

Count_2

Count_m

+= 1

Map “similar” states
to the same entry
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Locality-Sensitive Hashing

Similarity Estimation Techniques From Rounding Algorithms
[Charikar 2002]

LSH

Table

Count_0

Count_1

Count_2

Count_mLSH
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Locality-Sensitive Hashing

LSH

Table

Count_0

Count_1

Count_2

Count_mLSH

Similarity Estimation Techniques From Rounding Algorithms
[Charikar 2002]
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Locality-Sensitive Hashing

#Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning
[Tang et al. 2017]

#

Table

Count_0

Count_1

Count_2

Count_mObservation features may not
be a good measure of similarity
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Locality-Sensitive Hashing

#Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning
[Tang et al. 2017]
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Locality-Sensitive Hashing

#Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning
[Tang et al. 2017]

#

Table

Count_0

Count_1

Count_2

Count_mFeature Transformation



51

Feature Embedding

#Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning
[Tang et al. 2017]
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State Hashing

#Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning
[Tang et al. 2017]
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State Hashing

#Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning
[Tang et al. 2017]
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State Hashing (Drawbacks)

• Learning an effective representation for hashing can be difficult

• Prone to aliasing

• Distribution of states changes during training (feature transform 
needs to be updated)

• Hard to pick hash table size a-priori
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Density Estimation

total timesteps

count

probability / density
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Idea: use density to estimate count

Density Estimation
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Agent visits a state

2 equations and 2 unknowns (         ,    ) 

Density Estimation

Unifying Count-Based Exploration and Intrinsic Motivation
[Bellemare et al. 2016]

Before After
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Solve for

Density Estimation

Unifying Count-Based Exploration and Intrinsic Motivation
[Bellemare et al. 2016]
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Solve for

Density Estimation

Unifying Count-Based Exploration and Intrinsic Motivation
[Bellemare et al. 2016]
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Solve for

Density Estimation

Unifying Count-Based Exploration and Intrinsic Motivation
[Bellemare et al. 2016]
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Solve for

Density Estimation

Unifying Count-Based Exploration and Intrinsic Motivation
[Bellemare et al. 2016]
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Solve for

Density Estimation

Unifying Count-Based Exploration and Intrinsic Motivation
[Bellemare et al. 2016]
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Solve for

Density Estimation

Unifying Count-Based Exploration and Intrinsic Motivation
[Bellemare et al. 2016]
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Density Estimation

Unifying Count-Based Exploration and Intrinsic Motivation
[Bellemare et al. 2016]
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Pseudo-Count

Unifying Count-Based Exploration and Intrinsic Motivation
[Bellemare et al. 2016]

“pseudo-count”
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Pseudo-Count

Unifying Count-Based Exploration and Intrinsic Motivation
[Bellemare et al. 2016]

How?
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Fit density model
• E.g. flow models, autoregressive models, CTS (Bellemare et al. 2016], etc.

Pseudo-Count

Unifying Count-Based Exploration and Intrinsic Motivation
[Bellemare et al. 2016]
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Exploration Pseudo-Count

Unifying Count-Based Exploration and Intrinsic Motivation
[Bellemare et al. 2016]
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Exploration Pseudo-Count

Unifying Count-Based Exploration and Intrinsic Motivation
[Bellemare et al. 2016]
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Exploration Pseudo-Count

Unifying Count-Based Exploration and Intrinsic Motivation
[Bellemare et al. 2016]
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Exploration Pseudo-Count

Unifying Count-Based Exploration and Intrinsic Motivation
[Bellemare et al. 2016]
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Count-Based Reward



73

Entropy-Based Reward

No need to estimate likelihood before and after state visitation

maximize state entropy
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Exploration Pseudo-Count

Unifying Count-Based Exploration and Intrinsic Motivation
[Bellemare et al. 2016]

Density estimation
is hard!
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Surprise Maximization

[Sikana] [Science Channel]

https://www.youtube.com/watch?v=3ZACLYO552I&ab_channel=SikanaEnglish
https://www.youtube.com/watch?v=JJfppydyGHw&ab_channel=ScienceChannel
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Surprise Maximization

• Use surprise as a proxy for novelty

How do we measure
surprise?
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Surprise Maximization

• Use surprise as a proxy for novelty

• Detect surprise via prediction error
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Surprise Maximization

• Use surprise as a proxy for novelty

• Detect surprise via prediction error
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Surprise Maximization

• Use surprise as a proxy for novelty

• Detect surprise via prediction error

prediction error → surprise
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Detect surprise using a dynamics model

Intrinsic reward maximizes prediction error

Dynamics Model

Surprise-Based Intrinsic Motivation for Deep Reinforcement Learning
[Achiam and Sastry 2017]
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Dynamics Model

Surprise-Based Intrinsic Motivation for Deep Reinforcement Learning
[Achiam and Sastry 2017]
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Dynamics Model

Surprise-Based Intrinsic Motivation for Deep Reinforcement Learning
[Achiam and Sastry 2017]

Trained with data
from policy
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Dynamics Model
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Forward dynamics model:

Inverse dynamics model:

Dynamics Models
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Inverse Dynamics Model
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Inverse Dynamics Model
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Intrinsic Curiosity Module (ICM)

Curiosity-driven Exploration by Self-supervised Prediction
[Pathak et al. 2017]

No extrinsic reward!
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Prediction Error

Why dynamics?

Error Error
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Prediction Error

Error Error
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Random Network Distillation

Exploration by Random Network Distillation
[Burda et al. 2019]

Predictor
Network

Target
Network
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Random Network Distillation

Exploration by Random Network Distillation
[Burda et al. 2019]
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Random Network Distillation

Exploration by Random Network Distillation
[Burda et al. 2019]

randomly
initialized
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Random Network Distillation

Exploration by Random Network Distillation
[Burda et al. 2019]
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Random Network Distillation

Exploration by Random Network Distillation
[Burda et al. 2019]
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Random Network Distillation

Exploration by Random Network Distillation
[Burda et al. 2019]
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Novelty

Prediction Error Novelty

Is this always true?
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Novelty

Prediction Error Novelty

Is this always true?

No!
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Novelty

Prediction Error Novelty

Is this always true?

No!

Unpredictable Novel≠
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Noisy-TV Problem

Large-Scale Study of Curiosity-Driven Learning
[Burda et al. 2018]
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Noisy-TV Problem

Large-Scale Study of Curiosity-Driven Learning
[Burda et al. 2018]

• Prediction error works
     well in static envs
• But can get distracted by
     variability in dynamic envs 
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Surprise Minimization

SMiRL: Surprise Minimizing Reinforcement Learning in Dynamic Environments
[Berseth et al. 2020]

Maximize Surprise

Minimize Surprise
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Surprise Minimization

SMiRL: Surprise Minimizing Reinforcement Learning in Dynamic Environments
[Berseth et al. 2020]

Maximize Surprise

Minimize Surprise
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Summary

• Exploration Exploitation Tradeoff

• Dense vs Sparse Rewards

• Intrinsic Motivation

• Count-Based Exploration

• Surprise Maximization
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