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Overview

* Exploration Exploitation Tradeoff
* Dense vs Sparse Rewards

* Intrinsic Motivation

* Count-Based Exploration

* Surprise Maximization



Exploration-Exploitation

Need to try new actions in case they are better




Exploration-Exploitation

Keep going to the same restaurant Try new restaurant



Drill at best known location Drill at a new location



Ad Recommendation
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Simple Exploration Strategies

€-greedy exploration:

r(als) = <(1 — ¢ if a=arg max, Q"(s,a’)

€ otherwise
\

Boltzmann exploration: .
Good action coverage

1 1
m(als) = 7P (EQ (s, a)) X Bad state coverage

Gaussian policy:

rlals) = Jexp 5 rls))715) ! a— rls)



Simple Exploration Strategies
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Simple Exploration Strategies




Reward Functions

* Reward function guides policy towards better actions

* Structure of reward function can have dramatic impact on exploration
and performance

* Well-shaped reward function: hard tasks can be made easy
* Poorly shaped reward function: easy tasks can be made almost impossible
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Reward Functions

* Dense reward
* Non-zero reward at every timestep reflecting progress towards goal

e Sparse reward
* Agent receives nonzero reward only when goal is completed
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Dense Reward

Non-zero reward at every timestep

reflecting progress towards goal

2
re=—|&—&l
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Sparse Reward

Agent receives nonzero reward only

when goal is completed

1 if @ at B

rt = .
) otherwise

=
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Reward Functions
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Dense Rewards
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Dense Rewards
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Dense Rewards
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Sparse Rewards

0 otherwise

{1 if ot B
ry =

o 0 0 0 0 0 0 1
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Sparse Rewards

0 otherwise

{1 if ot B
ry =

0 0 0 0 0 0 0 1

0
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Sparse Rewards

0 otherwise

{1 if ot B
ry =

o 0 0 0 0 0 0 0 1

-l @ 2
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Sparse Rewards

2

1 if @ at B

0 otherwise

o 0 0 0 0 0 0 0 1

=
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Sparse Rewards

0 otherwise

{1 if ot B
ry =

o 0 0 0 0 0 0 0 1

N O = - 2
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Sparse Rewards

ry =

0 otherwise

{1 if ot B

o 0 0 0 0 0 0 0 1

SmarY
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Sparse Rewards

1 if @ at B

rt = .
) otherwise

Random exploration can be very inefficient for long horizon tasks

‘fﬁ} 2,
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Long Horizon Tasks

Stack 4
Sparse
54% success

1 stack up to 4 blocks with a fully sparse reward.

Overcoming Exploration in Reinforcement Learning with Demonstrations
[Nair et al. 2018]
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Dense vs Sparse Rewards

Dense reward
Frequent feedback (faster learning)
Easier exploration

X Shaping bias

X Harder to design

Sparse reward
X |nfrequent feedback (slower learning)
X Harder exploration

Less shaping bias

Easier to design
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Dense vs Sparse Rewards

Dense reward
Frequent feedback (faster learning)
Better exploration

X Shaping bias

X Harder to design

Sparse reward
X |nfrequent feedback (slower learning)
X Harder exploration

Less shaping bias

Easier to design

28



Shaping Bias
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Shaping Bias
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Shaping Bias

re=— |- =
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Shaping Bias
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Shaping Bias

0 otherwise

{1 if B ot B
ry =

i
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Shaping Bias

0 otherwise

{1 if B ot B
ry =
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Atari

Fairly Easy

Almost Impossible
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Montezuma’s Revenge

* Very sparse reward
e +1: getting key
* +1: opening door

* RL algorithm has no idea what keys and doors
are
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Montezuma’s Revenge

Graphical Game Solution

Montezuma’s e Gome o
Revenge ONTEAMA'S REVENGE

@ 1984 Parker Brothers
5T PARKER BROTHERS
ATARI® 2600™ js o registered
ATARI™ 2600™ trademark of the Atari

Solution: Level 1 H Corporation

[Graphic Created by Ben Valdes]



https://atariage.com/2600/archives/strategy_MontezumasRevenge_Level1.html

Better Exploration Strategies

e Agent needs to visit new states and try new actions to find optimal
strategies

* Encourage coverage of both states and actions

N\

relatively easy

ST J=> /X a
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Better Exploration Strategies

e Agent needs to visit new states and try new actions to find optimal
strategies

* Encourage coverage of both states and actions

e

much harder %

encourage agent to

visit new states &
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Intrinsic Motivation
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Intrinsic Motivation

7/’\‘75 — ’I"?Xt

i

Extrinsic Reward

Extrinsic reward
b from environment

* encourage agent to perform a given task

Intrinsic reward
* from the agent itself

°* encourage agent to explore new states

Intrinsic Reward
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Intrinsic Reward

* Nonstationary reward

* Low for frequently visited states *7“

* High for rarely visited states ?T%nt

nt
t
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Count-Based Exploration

Keep count N (s)on how many times agent visited a particular state

dense reward

nt|_ 1
Tt —
1+ N (St)
o
b =
\ J J
' . ' .
*T%ﬂt ffr%nt

Near-Bayesian Exploration in Polynomial Time

[Kolter and Ng 2009]
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Count-Based Exploration

Keep count N (s)on how many times agent visited a particular state

1 What about large/
1+ N(St) continuous states?

T 2

\ J \ J
|

|
*T%ﬂt ffr%nt

Near-Bayesian Exploration in Polynomial Time
[Kolter and Ng 2009]

,r%nt _
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State Hashing

H

/

Map “similar” states
to the same entry

Table

Count_O

Count_1

Count_2

Count_m

#Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning

[Tang et al. 2017]
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Locality-Sensitive Hashing

Table
S1==p| LSH Sy
"y Count_2
S ==p| LSH

Similarity Estimation Techniques From Rounding Algorithms
[Charikar 2002]



Locality-Sensitive Hashing

Table

S1==9{LSH o

Count_2
.
5 ©

S ==p| LSH

Similarity Estimation Techniques From Rounding Algorithms
[Charikar 2002]



Locality-Sensitive Hashing

Table

Count_O

Count_1

Count_2

H .

Observation features may not Count_m

be a good measure of similarity

#Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning
[Tang et al. 2017]



Locality-Sensitive Hashing

#Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning
[Tang et al. 2017] 49



Locality-Sensitive Hashing

Table
Count_O
Count_1
! E Count_2
O
O
Feature Transformation Count_m

#Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning
[Tang et al. 2017]



Feature Embedding

downsample
@ 4 I- . —|

6@6 6 k6 6 x 6 6 < 6 5% 6 6 linear softmgx
96 x 5 x5 512 96 x 5 x5
96 x 11 x 11 96 x 10 x 10
1024
U 96 x 24 x 24 2400 96 x 24 x 24 i
1 x 52 x 52 1 X 52 x52 64 x52x 52

P(s)

#Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning
[Tang et al. 2017] 51



State Hashing

(a) MountainCar (b) CartPoleSwingup (¢) SwimmerGather

= baseline |
VIME |
we  SimHash

200 400 600 200

(d) HalfCheetah

#Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning

[Tang et al. 2017]

1000
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State Hashing

-

500

400 -

300+

200k o Y YR T T L E

100

e

i I I I i
100 200 300 400 500

(d) Montezuma’s Revenge

#Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning

[Tang et al. 2017]

=== TRPO-AE-SimHash
TRPO

m== TRPO-BASS-SimHash

m== TRPO-pixel-SimHash
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State Hashing (Drawbacks)

* Learning an effective representation for hashing can be difficult
* Prone to aliasing

* Distribution of states changes during training (feature transform
needs to be updated)

* Hard to pick hash table size a-priori
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Density Estimation

probability / density

total timesteps
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Density Estimation

ldea: use density to estimate count

56



Density Estimation

Agent visits a state S
Before

2 equations and 2 unknowns (N (s), n)

Unifying Count-Based Exploration and Intrinsic Motivation
[Bellemare et al. 2016]

After
N(s)+1

/ _
p(s)— n+1
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Density Estimation

Solve for N (s)

Unifying Count-Based Exploration and Intrinsic Motivation
[Bellemare et al. 2016] 58



Density Estimation

Solve for N (s)

N(s) = np(s) —

Unifying Count-Based Exploration and Intrinsic Motivation
[Bellemare et al. 2016]
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Density Estimation

Solve for N (s)

Unifying Count-Based Exploration and Intrinsic Motivation
[Bellemare et al. 2016]
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Density Estimation

Solve for N (s)
p(s) = NS)
N(s) = np(s)
np'(s) + p'(s) = N(s) + 1
= np(s)

Unifying Count-Based Exploration and Intrinsic Motivation

[Bellemare et al. 2016]




Density Estimation

Solve for N (s)
pls) = () =

N(s) = np(s)
np'(s) +p'(s) = N(s) + 1
np'(s) + p'(s) = np(s) + 1
n(p'(s) — p(s)) = 1 —p(s)
I e 4O

p'(s) — p(s)

Unifying Count-Based Exploration and Intrinsic Motivation
[Bellemare et al. 2016]
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Density Estimation

Solve for N (s)
pe) = )=
N(s) = np(s)
np'(s) +p'(s) = N(s) + 1
np'(s) + p'(s) = np(s) + 1

Unifying Count-Based Exploration and Intrinsic Motivation
[Bellemare et al. 2016]
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Density Estimation

Unifying Count-Based Exploration and Intrinsic Motivation
[Bellemare et al. 2016]
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Pseudo-Count

“pseudo-count”

Unifying Count-Based Exploration and Intrinsic Motivation
[Bellemare et al. 2016]

65



Pseudo-Count

Unifying Count-Based Exploration and Intrinsic Motivation
[Bellemare et al. 2016]

How?
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Pseudo-Count

Fit density model
e E.g. flow models, autoregressive models, CTS (Bellemare et al. 2016], etc.

p(s) ~ p(s) p'(s) = p'(s)

Unifying Count-Based Exploration and Intrinsic Motivation
[Bellemare et al. 2016]
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Exploration Pseudo-Count

ALGORITHM: Exploration with Pscudo Counts

1: D < initialize dataset
2: Fit density model p(s) to D

3: for every timestep ¢ do

4:
5%

6:
T:

12:

Observe state s,

Sample action from policy a;, ~ w(a|s;)

Apply a, and observe new state s,,; and extrinsic reward r§**
Store s;41 in D

Fit density model p'(s) to D
Use p(s,,1) and p'(s,,1) to estimate pseudo-count N(s;,)

pp

13: end for

Unifying Count-Based Exploration and Intrinsic Motivation

[Bellemare et al. 2016]




Exploration Pseudo-Count

ALGORITHM: Exploration with Pscudo Counts

1: D < initialize dataset
2: Fit density model p(s) to D

3: for every timestep ¢ do

4:  Observe state s,

5 Sample action from policy a;, ~ w(a|s;)

6:  Apply a; and observe new state s,,; and extrinsic reward r§*'
7:  Store s;4q1 in D

8:  Fit density model p'(s) to D
9:  Use p(s;y1) and p'(s; 1) to estimate pseudo-count N(s;, )

1

2 pe g ~ /0.01 4 N(sp1)

13: end for

Unifying Count-Based Exploration and Intrinsic Motivation
[Bellemare et al. 2016] 69



Exploration Pseudo-Count

7000
6000
5000

Score

1000 ¢

4000+
3000
2000

MONTEZUMA'S REVENGE FREEWAY
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— : 20 |
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5
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50 | 0 g
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0O 20 40 60 80 100 20 40 60 80 100 O 20 40 60 80

Training frames (millions)

Unifying Count-Based Exploration and Intrinsic Motivation
[Bellemare et al. 2016]
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Exploration Pseudo-Count

No bonus

With bonus

Unifying Count-Based Exploration and Intrinsic Motivation
[Bellemare et al. 2016]
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Count-Based Reward

,r%nt _

1

1+ N(s¢+1)

\p(S)
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Entropy-Based Reward

nt

e = —log (p(si41))

N\

maximize state entropy

H(s)
No need to estimate likelihood before and after state visitation

p(s) =~ p(s) p'(s) ~ p'(s)
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Exploration Pseudo-Count

ALGORITHM: Exploration with Pscudo Counts
1: D < initialize dataset
2: Fit density model p(s) to D

3: for every timestep ¢ do

4:  Observe state s,

5 Sample action from policy a;, ~ w(a|s;)

6:  Apply a; and observe new state s,,; and extrinsic reward r§*'
7:  Store s;4q1 in D

Density estimation

Fit density model p'(s) to D is hard!
Use p(s;.1) and p'(s,41) to estimate pseudo-count N (s, 1)
10:  Calculate intrinsic reward r,"" with N(s;;1)

11:  Calculate reward r; = r{** + pr,™

122 p<+ g
13: end for

Unifying Count-Based Exploration and Intrinsic Motivation

[Bellemare et al. 2016] 74



Surprise Maximization

[Sikana] - [cince Channel

75


https://www.youtube.com/watch?v=3ZACLYO552I&ab_channel=SikanaEnglish
https://www.youtube.com/watch?v=JJfppydyGHw&ab_channel=ScienceChannel

Surprise Maximization

* Use surprise as a proxy for novelty

N

How do we measure
surprise?

76



Surprise Maximization

e Use surprise as a proxy for novelty
* Detect surprise via prediction error

a_—0®5]
sc/
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Surprise Maximization

e Use surprise as a proxy for novelty
* Detect surprise via prediction error

SC%

®sH
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Surprise Maximization

e Use surprise as a proxy for novelty
* Detect surprise via prediction error

A

S
prediction error — surprise
v

®sH
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Dynamics Model

Detect surprise using a dynamics model
/
f(s's,a)

Intrinsic reward maximizes prediction error

ri' = —log f(s¢11]st, ay)

Surprise-Based Intrinsic Motivation for Deep Reinforcement Learning
[Achiam and Sastry 2017]
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Dynamics Model

S
O

N A
f s

-

l

nt

>® _

Surprise-Based Intrinsic Motivation for Deep Reinforcement Learning

[Achiam and Sastry 2017]
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Dynamics Model

Trained with data
from policy

— .
(51, a0,8))} s’
T , —T%ﬂt
A

o 0 .

“~

~~

Surprise-Based Intrinsic Motivation for Deep Reinforcement Learning
[Achiam and Sastry 2017] 37



Dynamics Model
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Dynamics Models

Forward dynamics model:

Inverse dynamics model:

f(s']s,a)

g(als,s’)
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Inverse Dynamics Model

@-»

A

>0
Int

ri = —logg(ay|s¢, se+1)
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Inverse Dynamics Model
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Intrinsic Curiosity Module (ICM)

No extrinsic reward!

Curiosity-driven Exploration by Self-supervised Prediction
[Pathak et al. 2017]



Prediction Error

S =P
A—p

Why dynamics?
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Prediction Error

asf X7

T 2

\ J \

| |
*Error fError
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Random Network Distillation

Target
Network f

Predictor f
Network

Exploration by Random Network Distillation
[Burda et al. 2019]
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Random Network Distillation

S ln'—»y‘
Y

A

arg max By ||11(5) = F(9)I]

Exploration by Random Network Distillation
[Burda et al. 2019] 91
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Random Network Distillation

L fr‘%nt p—

y—y

randomly
initialized

5 2
arg maxBg.p ||| f(s) = f(s)][
f
Exploration by Random Network Distillation
[Burda et al. 2019] 92



Random Network Distillation
——— RND —— Dynamics

Gravitar MontezumaRevenge Pitfall
4000 - 01
2000 - =9
JA
' PrivateEye ' Solaris ' ' Venture '
2000 -
10000 - 3000 -
1000 -
5000 - 2000 -
1000 -
O L 1 I I 0 A I I 1
0 200K 400K 0 200K 400K

Exploration by Random Network Distillation
[Burda et al. 2019] 93




Random Network Distillation
— PPO —— Dynamics

Gravitar MontezumaRevenge Pitfall
4000 - 01
2000 - =9
JA
' PrivateEye ' Solaris ' ' Venture '
2000 -
10000 - 3000 -
1000 -
5000 - 2000 -
1000 -
O L 1 I I 0 A I I 1
0 200K 400K 0 200K 400K

Exploration by Random Network Distillation
[Burda et al. 2019] 94



Random Network Distillation
— PPO. —— RND

Gravitar MontezumaRevenge Pitfall
4000 - 01
2000 - =9
JA
' PrivateEye ' Solaris ' ' Venture '
2000 -
10000 - 3000 -
1000 -
5000 - 2000 -
1000 -
O L 1 I I 0 A I I 1
0 200K 400K 0 200K 400K

Exploration by Random Network Distillation
[Burda et al. 2019] 95




Novelty

Prediction Error s Novelty

Is this always true?
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Novelty

Prediction Error

Is this always true?

Novelty
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Novelty

No!

Prediction Error % Novelty

Is this always true?

Unpredictable =Z& Novel
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Noisy-TV Problem

Large-Scale Study of Curiosity-Driven Learning
[Burda et al. 2018]

99



Noisy-TV Problem

&

* Prediction error works
well in static envs

* But can get distracted by
variability in dynamic envs

Large-Scale Study of Curiosity-Driven Learning
[Burda et al. 2018]



Surprise Minimization

Maximize Surprise
nt

e = —log (p(st+1))

Minimize Surprise
Int

re = log (p(s¢41))

SMIRL: Surprise Minimizing Reinforcement Learning in Dynamic Environments
[Berseth et al. 2020] 101



Surprise Minimization

Maximize Surprise
nt

e = —log (p(st+1))

Minimize Surprise
Int

re = log (p(s¢41))

SMIRL: Surprise Minimizing Reinforcement Learning in Dynamic Environments
[Berseth et al. 2020] 102



Summary

* Exploration Exploitation Tradeoff
* Dense vs Sparse Rewards

* Intrinsic Motivation

* Count-Based Exploration

* Surprise Maximization
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