Exploration

CMPT 729 G100

Jason Peng

Overview

- Exploration Exploitation Tradeoff
- Dense vs Sparse Rewards
- Intrinsic Motivation
- Count-Based Exploration
- Surprise Maximization

Exploration-Exploitation

Need to try new actions in case they are better

Exploration-Exploitation

Keep going to the same restaurant

Try new restaurant

Oil Drilling

Drill at best known location

Drill at a new location

Ad Recommendation

Show most successful ad

Show a different ad

 ϵ -greedy exploration:

$$\pi(\mathbf{a}|\mathbf{s}) = \begin{cases} 1 - \epsilon & \text{if } \mathbf{a} = \arg \max_{\mathbf{a}'} Q^k(\mathbf{s}, \mathbf{a}') \\ \epsilon & \text{otherwise} \end{cases}$$

Boltzmann exploration:

$$\pi(\mathbf{a}|\mathbf{s}) = \frac{1}{Z} \exp\left(\frac{1}{\beta}Q^k(\mathbf{s},\mathbf{a})\right)$$

Good action coverage

X Bad state coverage

Gaussian policy:

$$\pi(\mathbf{a}|\mathbf{s}) = \frac{1}{Z} \exp\left(-\frac{1}{2}\left(\mathbf{a} - \mu_{\pi}(\mathbf{s})\right)^{\mathsf{T}} \Sigma(\mathbf{s})^{-1} \left(\mathbf{a} - \mu_{\pi}(\mathbf{s})\right)\right)$$

Simple Exploration Strategies

Simple Exploration Strategies

Simple Exploration Strategies

Reward Functions

- Reward function guides policy towards better actions
- Structure of reward function can have dramatic impact on exploration and performance
 - Well-shaped reward function: hard tasks can be made easy
 - Poorly shaped reward function: easy tasks can be made almost impossible

- Dense reward
 - Non-zero reward at every timestep reflecting progress towards goal
- Sparse reward
 - Agent receives nonzero reward only when goal is completed

Dense Reward

Non-zero reward at every timestep reflecting progress towards goal

Agent receives nonzero reward only when goal is completed

$$r_t = \begin{cases} 1 & \text{if if at } & \\ 0 & \text{otherwise} \end{cases}$$

Dense Rewards

|--|--|--|--|--|

Dense Rewards

۲ •				00

Dense Rewards

 $r_t = \begin{cases} 1 & \text{if if at } \\ 0 & \text{otherwise} \end{cases}$

 $r_t = \begin{cases} 1 & \text{if is at is} \\ 0 & \text{otherwise} \end{cases}$

 $r_t = \begin{cases} 1 & \text{if if at } \\ 0 & \text{otherwise} \end{cases}$

 $r_t = \begin{cases} 1 & \text{if if at } \\ 0 & \text{otherwise} \end{cases}$

 $r_t = \begin{cases} 1 & \text{if if at } \\ 0 & \text{otherwise} \end{cases}$

 $r_t = \begin{cases} 1 & \text{if if at } \\ 0 & \text{otherwise} \end{cases}$

$$r_t = \begin{cases} 1 & \text{if if at } & \\ 0 & \text{otherwise} \end{cases}$$

Random exploration can be very inefficient for long horizon tasks

Long Horizon Tasks

Overcoming Exploration in Reinforcement Learning with Demonstrations [Nair et al. 2018]

Dense vs Sparse Rewards

Dense reward

- ✓ Frequent feedback (faster learning)
- Easier exploration
- Shaping bias
- ✗ Harder to design

Sparse reward

- Infrequent feedback (slower learning)
- ✗ Harder exploration
- Less shaping bias
- Easier to design

Dense vs Sparse Rewards

Dense reward

- ✓ Frequent feedback (faster learning)
- Better exploration
- Shaping bias
- ✗ Harder to design

Sparse reward

- Infrequent feedback (slower learning)
- ✗ Harder exploration
 - Less shaping bias
- Easier to design

 $r_t = \begin{cases} 1 & \text{if if at } & \\ 0 & \text{otherwise} \end{cases}$

 $r_t = \begin{cases} 1 & \text{if if at } & \\ 0 & \text{otherwise} \end{cases}$

Atari

Fairly Easy

Almost Impossible

Montezuma's Revenge

- Very sparse reward
- +1: getting key
- +1: opening door
- RL algorithm has no idea what keys and doors are
Montezuma's Revenge

[Graphic Created by <u>Ben Valdes</u>]

Better Exploration Strategies

- Agent needs to visit new states and try new actions to find optimal strategies
- Encourage coverage of *both* states and <u>actions</u>

relatively easy

Better Exploration Strategies

- Agent needs to visit new states and try new actions to find optimal strategies
- Encourage coverage of *both* states and actions

much harder

visit new states

 r_t

Extrinsic reward

- from environment
- encourage agent to perform a given task

Intrinsic reward

- from the agent itself
- encourage agent to explore new states

Intrinsic Reward

- Nonstationary reward
- Low for frequently visited states $igslash r_t^{\mathrm{int}}$
- High for rarely visited states ${\sin t} r_t^{
 m int}$

Keep count $N(\mathbf{s})$ on how many times agent visited a particular state

dense reward
$$r_t^{\text{int}} = \frac{1}{1 + N(\mathbf{s}_t)}$$

Near-Bayesian Exploration in Polynomial Time [Kolter and Ng 2009] Keep count $N(\mathbf{s})$ on how many times agent visited a particular state

Near-Bayesian Exploration in Polynomial Time [Kolter and Ng 2009]

State Hashing

Similarity Estimation Techniques From Rounding Algorithms [Charikar 2002]

Similarity Estimation Techniques From Rounding Algorithms [Charikar 2002]

Locality-Sensitive Hashing

Feature Embedding

State Hashing

State Hashing

State Hashing (Drawbacks)

- Learning an effective representation for hashing can be difficult
- Prone to aliasing
- Distribution of states changes during training (feature transform needs to be updated)
- Hard to pick hash table size a-priori

Density Estimation

$$p(\mathbf{s}) = \frac{N(\mathbf{s})}{n}$$

Idea: use density to estimate count

Agent visits a state S Before After $p(\mathbf{s}) = \frac{N(\mathbf{s})}{n} \qquad p'(\mathbf{s}) = \frac{N(\mathbf{s}) + 1}{n+1}$

2 equations and 2 unknowns ($N(\mathbf{s})$, n)

Density Estimation

Solve for $N(\mathbf{s})$

$$p(\mathbf{s}) = \frac{N(\mathbf{s})}{n} \qquad p'(\mathbf{s}) = \frac{N(\mathbf{s}) + 1}{n+1}$$

Density Estimation

Solve for $N(\mathbf{s})$ $p(\mathbf{s}) = \frac{N(\mathbf{s})}{n} \qquad p'(\mathbf{s}) = \frac{N(\mathbf{s}) + 1}{n+1}$ $N(\mathbf{s}) = np(\mathbf{s})$ $np'(\mathbf{s}) + p'(\mathbf{s}) = \frac{N(\mathbf{s}) + 1}{= np(\mathbf{s})}$

Solve for $N(\mathbf{s})$ $p(\mathbf{s}) = \frac{N(\mathbf{s})}{1}$ $p'(\mathbf{s}) = \frac{N(\mathbf{s}) + 1}{n+1}$ $\mathbf{N}(\mathbf{s}) = np(\mathbf{s})$ $np'(\mathbf{s}) + p'(\mathbf{s}) = N(\mathbf{s}) + 1$ $np'(\mathbf{s}) + p'(\mathbf{s}) = np(\mathbf{s}) + 1$ $n(p'(\mathbf{s}) - p(\mathbf{s})) = 1 - p'(\mathbf{s})$ $n = \frac{1 - p'(\mathbf{s})}{p'(\mathbf{s}) - p(\mathbf{s})}$

Solve for $N(\mathbf{s})$ $p'(\mathbf{s}) = \frac{N(\mathbf{s}) + 1}{n + 1}$ $p(\mathbf{s}) = \frac{N(\mathbf{s})}{1}$ $\mathbf{N}(\mathbf{s}) = np(\mathbf{s})$ $np'(\mathbf{s}) + p'(\mathbf{s}) = N(\mathbf{s}) + 1$ $np'(\mathbf{s}) + p'(\mathbf{s}) = np(\mathbf{s}) + 1$ $n(p'(\mathbf{s}) - p(\mathbf{s})) = 1 - p'(\mathbf{s})$ $n = \frac{1 - p'(\mathbf{s})}{p'(\mathbf{s}) - p(\mathbf{s})}$

$$N(\mathbf{s}) = \frac{1 - p'(\mathbf{s})}{p'(\mathbf{s}) - p(\mathbf{s})} p(\mathbf{s})$$

Density Estimation

$$N(\mathbf{s}) = \frac{1 - p'(\mathbf{s})}{p'(\mathbf{s}) - p(\mathbf{s})} p(\mathbf{s})$$

Pseudo-Count

$$\hat{N}(\mathbf{s}) = \frac{1-p'(\mathbf{s})}{p'(\mathbf{s})-p(\mathbf{s})}p(\mathbf{s})$$
 "pseudo-count"

Pseudo-Count

$$\hat{N}(\mathbf{s}) = \frac{1 - p'(\mathbf{s})}{p'(\mathbf{s}) - p(\mathbf{s})} p(\mathbf{s})$$

Fit density model

• E.g. flow models, autoregressive models, CTS (Bellemare et al. 2016], etc.

$$\rho(\mathbf{s}) \approx p(\mathbf{s}) \qquad \rho'(\mathbf{s}) \approx p'(\mathbf{s})$$

Exploration Pseudo-Count

ALGORITHM: Exploration with Pseudo Counts

- 1: $\mathcal{D} \leftarrow \text{initialize dataset}$
- 2: Fit density model $\rho(\mathbf{s})$ to \mathcal{D}
- 3: for every timestep t do
- 4: Observe state \mathbf{s}_t
- 5: Sample action from policy $\mathbf{a}_t \sim \pi(\mathbf{a}_t | \mathbf{s}_t)$
- 6: Apply \mathbf{a}_t and observe new state \mathbf{s}_{t+1} and extrinsic reward r_t^{ext}
- 7: Store \mathbf{s}_{t+1} in \mathcal{D}

8: Fit density model
$$\rho'(\mathbf{s})$$
 to \mathcal{D}
9: Use $\rho(\mathbf{s}_{t+1})$ and $\rho'(\mathbf{s}_{t+1})$ to estimate pseudo-count $\hat{N}(\mathbf{s}_{t+1})$
10: Calculate intrinsic reward r_t^{int} with $N(\mathbf{s}_{t+1})$
11: Calculate reward $r_t = r_t^{\text{ext}} + \beta r_t^{\text{int}}$
12: $\rho \leftarrow \rho'$
13: end for

Exploration Pseudo-Count

ALGORITHM: Exploration with Pseudo Counts

- 1: $\mathcal{D} \leftarrow \text{initialize dataset}$
- 2: Fit density model $\rho(\mathbf{s})$ to \mathcal{D}
- 3: for every timestep t do
- 4: Observe state \mathbf{s}_t
- 5: Sample action from policy $\mathbf{a}_t \sim \pi(\mathbf{a}_t | \mathbf{s}_t)$
- 6: Apply \mathbf{a}_t and observe new state \mathbf{s}_{t+1} and extrinsic reward r_t^{ext}
- 7: Store \mathbf{s}_{t+1} in \mathcal{D}

8: Fit density model
$$\rho'(\mathbf{s})$$
 to \mathcal{D}
9: Use $\rho(\mathbf{s}_{t+1})$ and $\rho'(\mathbf{s}_{t+1})$ to estimate pseudo-count $\hat{N}(\mathbf{s}_{t+1})$
10: Calculate intrinsic reward r_t^{int} with $N(\mathbf{s}_{t+1})$
11: Calculate reward $r_t = r_t^{\text{ext}} + \beta r_t^{\text{int}}$
12: $\rho \leftarrow \rho'$
13: end for

Exploration Pseudo-Count

 $r_t^{\text{int}} = \frac{1}{1 + N(\mathbf{s}_{t+1})}$ \mathbf{S}
$$\begin{aligned} r_t^{\text{int}} &= -\log\left(\rho(\mathbf{s}_{t+1})\right) \\ & & \\ & \\ & \\ & \\ & \\ \mathcal{H}(\mathbf{s}) \end{aligned}$$

No need to estimate likelihood before and after state visitation

$$\rho(\mathbf{s}) \approx p(\mathbf{s}) \qquad \rho'(\mathbf{s}) \approx p'(\mathbf{s})$$

Exploration Pseudo-Count

ALGORITHM: Exploration with Pseudo Counts

- 1: $\mathcal{D} \leftarrow \text{initialize dataset}$
- 2: Fit density model $\rho(\mathbf{s})$ to \mathcal{D}
- 3: for every timestep t do
- 4: Observe state \mathbf{s}_t
- 5: Sample action from policy $\mathbf{a}_t \sim \pi(\mathbf{a}_t | \mathbf{s}_t)$
- 6: Apply \mathbf{a}_t and observe new state \mathbf{s}_{t+1} and extrinsic reward r_t^{ext}

7: Store
$$\mathbf{s}_{t+1}$$
 in \mathcal{D}

Density estimation is hard!

8: Fit density model $\rho'(\mathbf{s})$ to \mathcal{D}

9: Use $\rho(\mathbf{s}_{t+1})$ and $\rho'(\mathbf{s}_{t+1})$ to estimate pseudo-count $\hat{N}(\mathbf{s}_{t+1})$

10: Calculate intrinsic reward r_t^{int} with $\hat{N}(\mathbf{s}_{t+1})$

11: Calculate reward $r_t = r_t^{\text{ext}} + \beta r_t^{\text{int}}$

12:
$$\rho \leftarrow \rho'$$

13: end for

Unifying Count-Based Exploration and Intrinsic Motivation [Bellemare et al. 2016]

[Sikana]

[Science Channel]

• Use surprise as a proxy for novelty

How do we measure surprise?

- Use surprise as a proxy for novelty
- Detect surprise via prediction error

- Use surprise as a proxy for novelty
- Detect surprise via prediction error

- Use surprise as a proxy for novelty
- Detect surprise via prediction error

Detect surprise using a dynamics model

$$f(\mathbf{s'}|\mathbf{s}, \mathbf{a})$$

Intrinsic reward maximizes prediction error

$$r_t^{\text{int}} = -\log f(\mathbf{s}_{t+1}|\mathbf{s}_t, \mathbf{a}_t)$$

Surprise-Based Intrinsic Motivation for Deep Reinforcement Learning [Achiam and Sastry 2017]

Surprise-Based Intrinsic Motivation for Deep Reinforcement Learning [Achiam and Sastry 2017]

Surprise-Based Intrinsic Motivation for Deep Reinforcement Learning [Achiam and Sastry 2017]

Forward dynamics model:

$$f(\mathbf{s'}|\mathbf{s}, \mathbf{a})$$

Inverse dynamics model:

 $g(\mathbf{a}|\mathbf{s},\mathbf{s'})$

Inverse Dynamics Model

$$r_t^{\text{int}} = -\log g(\mathbf{a}_t | \mathbf{s}_t, \mathbf{s}_{t+1})$$

Inverse Dynamics Model

Intrinsic Curiosity Module (ICM)

No extrinsic reward!

Curiosity-driven Exploration by Self-supervised Prediction [Pathak et al. 2017]

Prediction Error

Prediction Error

s— a— \mathcal{Y} f

$$\begin{aligned} \mathbf{s} & \mathbf{f} & \mathbf{y} \\ \mathbf{f} & \hat{f} & \hat{y} \end{aligned} r_t^{\text{int}} = ||\hat{y} - y||^2 \\ \arg\max_f \mathbb{E}_{\mathbf{s} \sim \mathcal{D}} \left[||\hat{f}(\mathbf{s}) - f(\mathbf{s})||^2 \right] \end{aligned}$$

Novelty

Novelty

Unpredictable \neq Novel

Noisy-TV Problem

Large-Scale Study of Curiosity-Driven Learning [Burda et al. 2018]

Noisy-TV Problem

- Prediction error works well in <u>static</u> envs
- But can get distracted by variability in <u>dynamic</u> envs

Large-Scale Study of Curiosity-Driven Learning [Burda et al. 2018]

SMiRL: Surprise Minimizing Reinforcement Learning in Dynamic Environments [Berseth et al. 2020]

SMiRL: Surprise Minimizing Reinforcement Learning in Dynamic Environments [Berseth et al. 2020]

Summary

- Exploration Exploitation Tradeoff
- Dense vs Sparse Rewards
- Intrinsic Motivation
- Count-Based Exploration
- Surprise Maximization