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Moving Target

• Target values change every iteration

• Can lead to unstable learning dynamics
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Target Network

target network

Human-Level Control Through Deep Reinforcement Learning
[Mnih et al. 2015]
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Target Network

Human-Level Control Through Deep Reinforcement Learning
[Mnih et al. 2015]

• Target network is a delayed copy of the Q-function

• Every 𝑚 iterations, copy parameters from Q-function to target 
network

• Works well in practice to stabilize Q-learning
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Deep Q-Network (DQN)

Human-Level Control Through Deep Reinforcement Learning
[Mnih et al. 2015]

Experience Replay + Target Network
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Target Network

Human-Level Control Through Deep Reinforcement Learning
[Mnih et al. 2015]

• Every 𝑚 iterations, copy parameters from Q-function to target 
network

Works well in practice to stabilize Q-learning

Abrupt changes to target values every 𝑚 iterations

Can cause some unstable learning dynamics
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Polyak Averaging

Continuous control with deep reinforcement learning
[Lillicrap et al. 2016]

• Initialize target network with the same parameters a Q-function

• Every iteration, update target network:

step size
(e.g.                     )
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Polyak Averaging

Continuous control with deep reinforcement learning
[Lillicrap et al. 2016]

• Initialize target network with the same parameters a Q-function

• Every iteration, update target network:

• Smoother changes to target values

step size
(e.g.                     )



13

Target Network

Slowly moving target network

• Works very well in practice

• Nearly every modern Q-learning algorithms uses some kind of target 
network
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DQN

Human-Level Control Through Deep Reinforcement Learning
[Mnih et al. 2015]
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How Accurate is the Q-Function?

Human-Level Control Through Deep Reinforcement Learning
[Mnih et al. 2015]

Space Invaders Seaquest

Real Score

Predicted Value
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How Accurate is the Q-Function?

Human-Level Control Through Deep Reinforcement Learning
[Mnih et al. 2015]
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How Accurate is the Q-Function?

Human-Level Control Through Deep Reinforcement Learning
[Mnih et al. 2015]
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Overestimation

Deep Reinforcement Learning with Double Q-learning
[van Hasselt et al. 2016]

predicted value

real value
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Overestimation

Bias towards positive errors



31

Overestimation

0 0
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Overestimation

0 0

Tends to be noisy
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Overestimation

0 0

More likely to overestimate next value
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Overestimation

Bootstrapping can propagate overestimation errors
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Overestimation

Bootstrapping can propagate overestimation errors
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Overestimation

Target network can slow
propagation of errors
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Overestimation

action selectionaction evaluation
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Decouple selection from evaluation by using different Q-functions

Double Q-Learning

action selectionaction evaluation
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Decouple selection from evaluation by using different Q-functions

Double Q-Learning
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Option 1: Train two separate Q-functions

Option 2: Use target network

Implementation

Deep Reinforcement Learning with Double Q-learning
[van Hasselt et al. 2016]

main Q-networktarget network
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Double Q-Learning

Deep Reinforcement Learning with Double Q-learning
[van Hasselt et al. 2016]

Q-Learning

Double Q-Learning
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Pessimistic Estimate

• Source of overestimation is model error

• Can we estimate model uncertainty for Q-function?

Action
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Ensemble

• Estimate model uncertainty with an ensemble

pessimistic value estimate

Maxmin Q-learning: Controlling the Estimation Bias of Q-learning
[Lan et al. 2020]
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• Compute minimum over a random subset of the ensemble

• in practice, randomly sampling 2 Q-functions work well

REDQ

Randomized Ensembled Double Q-Learning: Learning Fast Without a Model
[Chen et al. 2021]
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REDQ

Randomized Ensembled Double Q-Learning: Learning Fast Without a Model
[Chen et al. 2021]

REDQREDQ
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REDQ

Randomized Ensembled Double Q-Learning: Learning Fast Without a Model
[Chen et al. 2021]

REDQREDQ

Model-
Based RL
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• Compute minimum over a random subset of the ensemble

• in practice, randomly sampling 2 Q-functions work well

Drawback:

• Need to train multiple Q-functions 

REDQ

Randomized Ensembled Double Q-Learning: Learning Fast Without a Model
[Chen et al. 2021]



55

• Instead of training an ensemble, emulate an ensemble using Dropout

DroQ

Dropout Q-Functions for Doubly Efficient Reinforcement Learning
[Hiraoka et al. 2022]
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DroQ

A Walk in the Park: Learning to Walk in 20 Minutes With Model-Free Reinforcement Learning
[Smith et al. 2022]
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Model Architecture

Discrete Actions
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• Q-values at a particular state often do not vary that much

Model Architecture

Action

V
al

u
e



60

• Q-values at a particular state often do not vary that much

• Only the relative values are needed to select actions

Model Architecture
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Model Architecture
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Model Architecture

Action-independent
value function

Action-dependent
advantage function
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Model Architecture
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Dueling Q-Networks

Dueling Network Architectures for Deep Reinforcement Learning
[Wang et al. 2016]
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Dueling Q-Networks

Dueling Network Architectures for Deep Reinforcement Learning
[Wang et al. 2016]
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• Prioritized Replay

• Multi-Step Returns

• Distributional RL

• Noisy Nets

• Etc…

Note: techniques for improving Q-Learning can also be applied to other 
algorithms (e.g. DDPG, SAC, TD3, MPO, etc.)

Lots of Tricks

Rainbow: Combining Improvements in Deep Reinforcement Learning
[Hessel et al. 2018]
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Summary

• Target Networks

• Overestimation

• Model Architecture
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