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Overview

• On-Policy vs Off-Policy

• On-Policy Algorithms

• Off-Policy Algorithms

• Trade-Offs
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On-Policy vs Off-Policy

On-policy:

• Model can be update using only data collected with the model

Off-policy:

• Model can be updated using data collected from other sources
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On-Policy

Dataset

On-Policy
Algorithm
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Off-Policy

Dataset

Off-Policy
Algorithm

can come from
anywhere
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Off-Policy

Dataset

Off-Policy
Algorithm

Policies from previous training iterations
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Off-Policy

Dataset

Off-Policy
Algorithm

Other agents
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Off-Policy

Dataset

Off-Policy
Algorithm

Humans
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RL Algorithms

Dataset

On-Policy
Algorithm

Dataset

Off-Policy
Algorithm

On-Policy Off-Policy
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On-Policy (REINFORCE)

Must be from
current policy

Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning
[Williams 1992]
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On-Policy (REINFORCE)

Collect data with
current policy

Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning
[Williams 1992]
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On-Policy (REINFORCE)

Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning
[Williams 1992]
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On-Policy (REINFORCE)

Perform just one grad update, 
then throw out data

Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning
[Williams 1992]
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On-Policy (Policy Gradient)

From current policy

Policy Gradient Methods for Reinforcement Learning with Function Approximation
[Sutton et al. 1999]
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On-Policy (Policy Gradient)

• If data is not from     , PG methods can completely fail to learn 
anything

From current policy

Policy Gradient Methods for Reinforcement Learning with Function Approximation
[Sutton et al. 1999]
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RL Algorithms

Dataset

On-Policy
Algorithm

Dataset

Off-Policy
Algorithm

On-Policy Off-Policy
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Behavioral Cloning

DatasetExpert Policy

Supervised
Learning

Record
Demonstrations
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• Dataset can come from anywhere, as long as it has sufficient coverage 
of states and actions.

Off-Policy (Model-Based RL)

Dataset

Planning

Dynamics
Model
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Off-Policy (Q-Learning)

Current Q-function
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Off-Policy (Q-Learning)

• The data distribution can be an arbitrary distribution

• Tabular Q-Learning
• If dataset covers all states and actions, then Q-learning will converge to the 

optimal Q-function

• Can learn from a completely random policy, as long as agent observes every 
state and action at least once

Does not depend on       !
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Off-Policy (Q-Learning)

Arbitrary
Dataset

Q-Learning
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Off-Policy (Q-Learning)

• The data distribution can be an arbitrary distribution

• Tabular Q-Learning
• If dataset covers all states and actions, then Q-learning will converge to the 

optimal Q-function

• Can learn from a completely random policy, as long as agent observes every 
state and action at least once
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Off-Policy (Q-Learning)
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Off-Policy (Q-Learning)
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Off-Policy (Q-Learning)
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Off-Policy (Q-Learning)
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Off-Policy (Q-Learning)

Independent of current model,
but the characteristics of
the data still matters.
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Off-Policy (Q-Learning)

• The data distribution can be an arbitrary distribution

• Q-Learning + function approximation
• Not guaranteed to converge to the optimal Q-function

• Can learn an effective policy from arbitrary dataset with sufficient coverage
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Off-Policy (Q-Learning)

Keep data from
previous iterations
for better coverage
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Off-Policy (SAC)
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Off-Policy (SAC)
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Off-Policy (SAC)

: behavior policy
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Surrogate Objective
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Surrogate Objective
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Surrogate Objective

is trying to maximize return starting in states visited by  
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Off-Policy (SAC)

• If                                , then 

• If                                , then algorithm will still learn some policy, but it 
might not be optimal

• Will not work for a completely random behavior policy, even if it 
covers all states and actions
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Off-Policy (SAC)

improves every iteration,
and gets closer to        
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Off-PolicyOn-Policy

On-Policy vs Off-Policy

REINFORCE
SAC DDPG Tabular

Q-Learning

Model-Based
RL

Offline RLQ-Learning
Policy Gradient

+
Importance Sampling

PPO

Policy Gradient
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Trade-Offs

On-Policy

Sample inefficient

Fast wall-clock time

Typically better asymptotic 
performance

More stable and easy to tune

Exploration limited by action 
distribution

Off-Policy

Sample efficient

Slow wall-lock time

Typically worse asymptotic 
performance

More unstable and hard to tune

Flexible exploration

✓

✓ 
✓

✓





✓



40

On-Policy Exploration

Exploration: what actions can the policy take?
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On-Policy Exploration

Exploration: what actions can the policy take?

Policy Gradient:

• Action distribution must have a differentiable log-likelihood

• Limited to simple action distributions with easy to compute log-
likelihoods
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Off-Policy Exploration

Exploration: what actions can the policy take?

SAC:

• Do not need to differentiate behavior policy

• Can collect data using any action distribution as long as it has good 
coverage of actions

• E.g. temporally correlated actions, epsilon-greedy, multi-modal 
distributions, mixture models, etc.
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Summary

• On-Policy vs Off-Policy

• On-Policy Algorithms

• Off-Policy Algorithms

• Trade-Offs
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