Model-Based
Reinforcement Learning

CMPT 729 G100

Jason Peng

Overview

 Model-Based RL
* DYNA
* Model Representations

* Uncertainty Estimation

* MPC

Taxonomy of RL Algorithms

* Model-Based Methods

Reinforcement Learning

Action

Environment

Reward

State

Sample Complexity

Simulation

Learning Agile Robotic Locomotion Skills by Imitating Animals
[Peng et al. 2020]

Sample Complexity

Simulation

Learning Agile Robotic Locomotion Skills by Imitating Animals
[Peng et al. 2020]

1.0
0.8 -
0.6 -
0.4 -
0.2 -

0.0

Sample Complexity

Simulation Real World

Learning Agile Robotic Locomotion Skills by Imitating Animals
[Peng et al. 2020] v

Sim-to-Real

Building a good simulator is hard

Can we learn a simulator?

Simulation
(Low-Fidelity)

Reinforcement Learning for Robust Parameterized Locomotion Control of Bipedal Robots
[Li et al. 2021]

Dynamics Model

dynamics model

Why Learn a Dynamics Model?

Complex Dynamics

Simple Dynamics

10

Dynamics Model

* Learn a dynamics model:

f(sls,a) = p(s']s, a)

Action . : . :
Train policy by interacting
| ; with learned model
Agent Environment /
t f

Reward

State
11

Learning Dynamics Model

* Collect data with a base policy 77()
Sy Qg S1 Qaj SO ST_1 a7 _

@ ~>@! >@ e oo O

* Dataset: D = {(S@', a;, S;,)}
* Fit a dynamics model via supervised learning

arg }rnax L(s,a,8)~D [10gf(5,‘57 a)}

>C

12

Model-Based RL

* Collect data with a base policy 77()
Sy Qg S1 Qaj SO ST_1 a7 _

o—>0—>0---0—>0

* Dataset: D = {(S@', a;, S;,)}
* Fit a dynamics model via supervised learning

arg;nax “(s,a,8')~D logf(s']s, a)]

* Train new policy 7 by simulating withf(S,‘S, a)

13

Problem

* Reward: climb as high as possible

0

b
= 2

Q~~

14

Problem

* Reward: climb as high as possible

Elevation increases
to the right

15

Problem

* Reward: climb as high as possible

16

Problem

* Reward: climb as high as possible

17

Problem

* Reward: climb as high as possible

18

Problem

* Reward: climb as high as possible

19

Problem

* Reward: climb as high as possible

20

Problem

* Reward: climb as high as possible

0

b
= 2

Q~~

21

Distribution Shift

e Data distribution is different from the policy’s distribution

D ~ p(s,alm) # p(s,a|n)

 Model f(s'|s, a) trained on D
* Low error under p(S, a|7r0) 4 X
* High error under p(S, a|7r)

e Can we make

p(s,alm) = p(s,a|m) !

Model-Based RL

* Collect data with a base policy 77()
Sy Qg S1 Qaj SO ST_1 a7 _

@ ~>@! >@ e oo O

>C

* Dataset: D = {(S@', a;, S;,)}
* Fit a dynamics model via supervised learning

arg }rnax L(s,a,8)~D [10gf(5,‘57 a)}

* Train new policy 7T by simulating Withf

23

DYNA

ALGORITHM: DYNA

1: 7V « initialize policy

2: D« {0} initialize dataset
3: for iteration £ =0.....n — 1 do
4: Sample trajectory 7 according to 7% (als)

5. Add transitions to dataset D = D U {(s;,a;,s})}

6: Fit dynamics model:
f =arg max,; Eas)p|logf(s’]s, a)l

7. Tl ¢ train policy by simulating rollouts with f(s'[s. a)
8: end for

9: return ™"

Dyna, an Integrated Architecture for Learning, Planning, and Reacting

[Sutton 1991]

24

DYNA

ALGORITHM: DYNA

1: 7 < initialize policy
2: D+ {(} initialize dataset

3: for iteration £ =0.....n — 1 do
4: Sample trajectory 7 according to 7% (als)
5. Add transitions to dataset D = D U {(s;,a;,s})}

6: Fit dynamics model:
f =arg max,; Eas)p|logf(s’]s, a)l

7. Tl ¢ train policy by simulating rollouts with f(s'[s. a)
8: end for

9: return ™"

Dyna, an Integrated Architecture for Learning, Planning, and Reacting

[Sutton 1991]

25

DYNA

ALGORITHM: DYNA
1: 7 < initialize policy
2: D« {0} initialize dataset

. for iteration £ =10,....n — 1 do
ample trajectory 7 according to 7% (als)
Add transitions to dataset D = D U {(s;,a;,s;)}

6: Fit dynamics model:
f =arg max,; Eas)p|logf(s’]s, a)l

7. Tl ¢ train policy by simulating rollouts with f(s'[s. a)
8: end for

9: return ™"

Dyna, an Integrated Architecture for Learning, Planning, and Reacting
[Sutton 1991] 26

DYNA

ALGORITHM: DYNA

1: 7 < initialize policy
2: D« {0} initialize dataset

3: for iteration £ =0.....n — 1 do
k

4: Sample trajectory 7 according to 7"(als

by |

Add transitions to dataset D = D U {(s;,a;,s;)}

6: Fit dynamics model:
f =arg max,; Eas)p|logf(s’]s, a)l

7. Tl ¢ train policy by simulating rollouts with f(s'[s. a)

8: end for

9: return ™"

Dyna, an Integrated Architecture for Learning, Planning, and Reacting
[Sutton 1991]

27

DYNA

ALGORITHM: DYNA

1: 7 < initialize policy
2: D« {0} initialize dataset

3: for iteration £ =0.....n — 1 do
4: Sample trajectory 7 according to 7% (als)
5. Add transitions to dataset D = D U {(s;,a;,s})}

6: Fit dynamics model:
f =arg max,; Eas)p|logf(s’]s, a)l

7. Tl ¢ train policy by simulating rollouts with f(s'[s. a)
8: end for

9: return ™"

Dyna, an Integrated Architecture for Learning, Planning, and Reacting
[Sutton 1991]

28

DYNA

ALGORITHM: DYNA

1: 7 < initialize policy
2: D« {0} initialize dataset

3: for iteration £ =0.....n — 1 do
4: Sample trajectory 7 according to 7% (als)
5. Add transitions to dataset D = D U {(s;,a;,s)}

6: Fit dynamics model:
f =arg max,; Eas)p|logf(s’]s, a)l

7. Tl ¢ train policy by simulating rollouts with f(s'[s. a)
8: end for

9: return ™"

Dyna, an Integrated Architecture for Learning, Planning, and Reacting

[Sutton 1991]

29

DYNA

ALGORITHM: DYNA

1: 7

0« initialize policy

2: D« {0} initialize dataset

3: for iteration £ =0.....n — 1 do

4:

5:

T

Sample trajectory 7 according to 7*(als)
Add transitions to dataset D = D U {(s;,a;,s;)}

Fit dynamics model:
f=arg max; Egasyop[logf(s'|s,a)]

7+ train policy by simulating rollouts with f(s'|s. a)

8: ena for

9: return ™"

Dyna, an Integrated Architecture for Learning, Planning, and Reacting

[Sutton 1991]

30

DYNA

ALGORITHM: DYNA

1: 7 < initialize policy
2: D« {0} initialize dataset

3: for iteration £ =10....,n — 1 do
4: Sample trajectory 7 according to 7% (als)
5. Add transitions to dataset D = D U {(s;,a;,s})}

6: Fit dynamics model:
f =arg max,; Eas)p|logf(s’]s, a)l

7. Tl ¢ train policy by simulating rollouts with f(s'[s. a)
8: end for

9: return ™"

Dyna, an Integrated Architecture for Learning, Planning, and Reacting

[Sutton 1991]

31

DYNA

ALGORITHM: DYNA

1: 7 < initialize policy
2: D« {0} initialize dataset

3: for iteration £ =0.....n — 1 do
4: Sample trajectory 7 according to 7% (als)
5. Add transitions to dataset D = D U {(s;,a;,s})}

6: Fit dynamics model:
f=arg max; Egasyop[logf(s'|s,a)]

9: return ™"

use any RL algorithm
(e.g. policy gradient, Q-learning, SAC, etc.)

Dyna, an Integrated Architecture for Learning, Planning, and Reacting

[Sutton 1991]

32

DYNA

ALGORITHM: DYNA
1: 7 < initialize policy
2: D« {0} initialize dataset

3: for iteration £k =0.....n — 1 do keep data from
4: b all iterations

" tO T

Sample trajectorv 7 accordin

by |

6: Fit dynamics model:
f =arg max,; Eas)p|logf(s’]s, a)l

7. Tl ¢ train policy by simulating rollouts with f(s'[s. a)
8: end for

9: return ™"

Dyna, an Integrated Architecture for Learning, Planning, and Reacting
[Sutton 1991] 33

Model Representation

» How do we represent f(s'[s, a)?
 MDP with small discrete states and actions = lookup table

fiik = f(sglsi, aj)

34

Deterministic Models

» How do we represent f(s'[s, a)?

arg min {‘(s,a,s’)wD

f

What if the dynamics

are stochastic?
S :>
A

|18~ f(s,)"

>’

35

Stochastic Models

» How do we represent f(s'[s, a)?

arg}nax U (s,a,8/)~D logf(s'|s,a)]

a=> f =4

36

Stochastic Models

» How do we represent f(s'[s, a)?

arg}nax U (s,a,8/)~D logf(s'|s,a)]
\ l

|
Conditional Generative Model
e Variational Autoencoders (VAEs)
e Generative Adversarial Networks (GANSs)
* Flow Models
e Diffusion Models
* Etc.

37

Reward Model

* If reward function is unknown, augment model to predict both states
and rewards

* For most tasks, reward function is available/specified by a human

dynamics model reward model

f(s'ls,a) h(rls,a,s’)

38

Model-Based Rollout

ALGORITHM: DYNA

1: 7 < initialize policy
2: D« {0} initialize dataset

3: for iteration £ =0.....n — 1 do
4: Sample trajectory 7 according to 7% (als)
5. Add transitions to dataset D = D U {(s;,a;,s})}

6: Fit dynamics model:
f=arg max; Egasyop[logf(s'|s,a)]

generate trajectories
9: return 7" with model

Dyna, an Integrated Architecture for Learning, Planning, and Reacting

[Sutton 1991]

39

Model-Based Rollout

— = = Real
----- Model

40

Drift

 Same action sequence in the real env and the model can lead to very
different trajectories

e Autoregressive model - compounding error

(T (T
| |

a() aj

41

Drift

Drift due to differences in
dynamics instead of actions

~ | | | L \

dddddaddddaggy
w

42

Model-Based Rollout

— = = Real
----- Model

accurate in

beginnin
PR 4
—’——
2 T TN
P

S @

later timesteps
are less accurate

43

Model-Based Rollout

- — = Re3| Generate shorter rollouts
----- Model
R
—’l
N -
S0 @ N -
N
\
~

But then policy will never
see later states

44

Model-Based Rollout

Real Generate shorter rollouts
Model from different real states
, 4
A e 2
/5’: —
o o e,
0@ \ P
N
“t -
Nl o
\\
4 \

45

Model-Based RL
model-based

model-based %

B 0.6 o _3
g g
=
§ ~0.8 g
-5
-1.0
—— NAF —6 —— NAF
- DDPG - DDPG
12 0 500 1000 1500 2000 2500 3000 =t 0 200 400 600 800 1000
episodes episodes
(a) Example task domains. (b) NAF and DDPG on multi-target reacher. (c) NAF and DDPG on peg insertion.

Continuous Deep Q-Learning with Model-based Acceleration
[GU et al. 2016] 46

DYNA

ALGORITHM: DYNA

1: 7 < initialize policy
2: D« {0} initialize dataset

3: for iteration £ =0.....n — 1 do
4: Sample trajectory 7 according to 7% (als)
5. Add transitions to dataset D = D U {(s;,a;,s})}

6: Fit dynamics model:
f=arg max; Egasyop[logf(s'|s,a)]

9: return ™"

use any RL algorithm
(e.g. policy gradient, Q-learning, SAC, etc.)

Dyna, an Integrated Architecture for Learning, Planning, and Reacting

[Sutton 1991]

47

Differentiable Dynamics

arg max
s

arg 1max ETNf(T|7T)

4

4

“T~p(T|T)

T—1

2

t=0

T—1

2

t=0

t
A’

t
YT

/ ’
use any RL algorithm
(e.g. policy gradient, Q-learning, SAC, etc.)

Differentiable Dynamics

X X X
% _Jdri0da; Orpoa;dsidag

00 day; 00 Da;dsiOag 00

49

Differentiable Dynamics

% _Jdri0da; Orpoa;dsidag
00 day; 00 Da;dsiOag 00

50

Differentiable Dynamics

% _ Orp0a; 0Orq0a

00 day; 90 Oay Os

881 8&0 |
8a0 00 |

Dynamics

51

Differentiable Dynamics

Fully Differentiable!

% _Jdri0da; Orpoa;dsidag
00 day; 00 Da;dsiOag 00

52

Differentiable Dynamics

T—1
t
g max Brfrin) |) 77
s
/ | t=0
Compute gradients using autodiff
and solve with gradient ascent

53

Differentiable Dynamics

SuperTrack: Motion Tracking for Physically Simulated Characters Using Supervised Learning

[Fussell et al. 2021]

Differentiable Dynamics

~ & F
A e . 4

A1 Quadruped URS5 Multi-Object XArm Visual Pick Sphero Ollie Visual
Walking Visual Pick Place and Place Navigation

DayDreamer: World Models for Physical Robot Learning
[WU et al. 2022] 55

Differentiable Dynamics

DayDreamer: World Models for Physical Robot Learning
[Wu et al. 2022]

56

Differentiable Dynamics

DayDreamer: World Models for Physical Robot Learning
[Wu et al. 2022]

57

Model Exploitation

ALGORITHM: DYNA

1: 7 < initialize policy
2: D« {0} initialize dataset

3: for iteration £ =0.....n — 1 do
4: Sample trajectory 7 according to 7% (als)
5. Add transitions to dataset D = D U {(s;,a;,s})}

Policy can exploit
6: it dynamics model: errors in model

f =arg max,; Eas)p|logf(s’]s, a)l

¢ train policy by simulating rollouts with f(s'|s, a)

9: return ™"

Dyna, an Integrated Architecture for Learning, Planning, and Reacting

[Sutton 1991]

58

2 Types of Uncertainty

Aleatoric Epistemic
(Statistical Uncertainty) (Model Uncertainty)

59

2 Types of Uncertainty

Aleatoric
(Statistical Uncertainty)

60

2 Types of Uncertainty

Aleatoric Epistemic
(Statistical Uncertainty) (Model Uncertainty)

61

2 Types of Uncertainty

Epistemic
(Model Uncertainty)

no data
62

2 Types of Uncertainty

Aleatoric Epistemic
(Statistical Uncertainty) (Model Uncertainty)

Policy can exploit model uncertainty

63

Uncertainty Estimation

e Can we estimate the model uncertainty?

S
A

=¥

This only estimates
statistical uncertainty

64

Uncertainty Estimation

e Can we estimate the model uncertainty?

* Bayesian inference:

p(f|D)

—

What is the likelihood of Lo .0.0..
a function given the data 0®°® °

Uncertainty Estimation

e Can we estimate the model uncertainty?

* Bayesian inference:

p(f|D)

—

What is the likelihood of
a function given the data

High Likelihood

66

Uncertainty Estimation

e Can we estimate the model uncertainty?

* Bayesian inference:

p(f|D)

——

What is the likelihood of
a function given the data

High Likelihood

Low Likelihood

67

Uncertainty Estimation

e Can we estimate the model uncertainty?

* Bayesian inference:

p(f|D) = o, D)

p(D)

68

Uncertainty Estimation

e Can we estimate the model uncertainty?

* Bayesian inference:

p(f|D) = o, D)

p(D)

69

Supervised Learning

arg max logp(f|D) = arg max log
f f

p(D|f)p(f)

p(D)

70

Supervised Learning

arg }’Hax logp(f|D) = arg }”ﬂax 1ng<1ﬁ(f1))z;(f)

= arg Jgnax logp(D| f)+logp(f)—logp(D)
| | |

Posterior Likelihood Prior Constant

71

Supervised Learning

arg }’Hax logp(f|D) = arg }”ﬂax 1ng<1ﬁ(f1))z;(f)

= arg max logp(D| f)~+logp(f)—logp(D)
Likelihood

Y

Maximum Likelihood

arg}nax L (s,a,8/)~D logf(s'|s,a)]

72

Supervised Learning

r - >

= F N

Supervised Learning

r - >

f>fo/\
fzy/r\/

Uncertainty Estimation

 Maximum likelihood only gives a point-wise approximation of the
posterior

* To estimate model uncertainty, need to approximate the full posterior
arg max logp(f|D)
/i \
Point-wise

. . Posterior
approximation

75

Ensemble

Ensemble

* Approximate posterior with ensemble

r.::".".E i D

e

Ensemble

* Approximate posterior with ensemble
* Models should be consistent under the data distribution

Ensemble

* Approximate posterior with ensemble
* Models should be consistent under the data distribution
* Models will hopefully disagree on out-of-distribution samples

out-of-distribution out-of-distribution out-of-distribution
78

How to train ensemble?

Bootstrapping
* Split dataset into subsets
* Train a separate model for each subset

Dy—> f

Reduces data available
to train each model

DL —+D 1 fy

D)= f,

79

How to train ensemble?

Bootstrapping
Reduces data available

to train each model

* Split dataset into subsets
* Train a separate model for each subset

In practice:
* Initialize models with different random parameters

* Train all models using the same dataset
* Stochasticity from SGD leads to diverse models

80

How to use ensemble?

* Sample random model for every transition

‘‘‘‘‘

S() A(

When to Trust Your Model: Model-Based Policy Optimization
[Janner et al. 2019]

81

How to use ensemble?

* Sample random model for every transition

f T
\\

i Ll

/2 L RN

v
SO) A S1 adj S9

—0—>0

When to Trust Your Model: Model-Based Policy Optimization
[Janner et al. 2019]

82

How to use ensemble?

* Sample random model for every transition

f T
\\

i Ll

/2 L RN

v
S) a9 S1 a} 852 ST—-1 a7 15T

O—0——0@°° - 0—>0

When to Trust Your Model: Model-Based Policy Optimization
[Janner et al. 2019]

How to use ensemble?

* Sample random model for every transition

Walker2d
6000
[
& 3000 = 5
3 | !
° % 4000 o
2 @
% 000 §1 g
— — Q
¢ 1000 g 2000 =
m Liv]
0 0
0 50k 100k 0 100k 200k 300k
steps steps

— MBPO} — SAC — PPO —— PETS

Ant Humanoid
6000 €000 0 =
e LT 7
=
[al]
S
2000 5 2000
=
m
0 0
0 100k 200k 300k 0 100k 200k 300k
steps steps
— STEVE — SLBO -- convergence

When to Trust Your Model: Model-Based Policy Optimization

[Janner et al. 2019]

84

How to use ensemble?

* Sample random model for every transition

Walker2d
6000
[
c 3000 = =
3 | =
° % 4000 o
2 @
% 000 §1 g
— — Q
¢ 1000 g 2000 =
m Liv]
0 0
0 50k 100k 0 100k 200k 300k
steps steps
— MBPO — SAC — PPO —— PETS

Ant Humanoid
6000 €000 0 =
e LT 7
=
[al]
S
2000 5 2000
=
m
0 0
0 100k 200k 300k 0 100k 200k 300k
steps steps
— STEVE — SLBO -- convergence

When to Trust Your Model: Model-Based Policy Optimization

[Janner et al. 2019]

85

How to use ensemble?

* Sample random model for every transition

* Penalize policy for model disagreement

r(s,a,s’)

MOReL: Model-Based Offline Reinforcement Learning
[Kidambi et al. 2020]

86

How to use ensemble?

* Sample random model for every transition

* Penalize policy for model disagreement

—K if d(s,a) > «

/
rp(s,a,s’) =
p(s:a,s) r(s,a,s’) otherwise

MOReL: Model-Based Offline Reinforcement Learning
[Kidambi et al. 2020]

87

How to use ensemble?

* Sample random model for every transition

* Penalize policy for model disagreement

, —K if d(s,a) > «
rp(s,a,s) = , e
r(s,a,s’) otherwise

MOReL: Model-Based Offline Reinforcement Learning
[Kidambi et al. 2020]

88

How to use ensemble?

* Sample random model for every transition

* Penalize policy for model disagreement

, —K if d(s,a) > «
rp(s,a,s) = = |
r(s,a,s’) otherwise

MOReL: Model-Based Offline Reinforcement Learning
[Kidambi et al. 2020]

89

How to use ensemble?

* Sample random model for every transition

* Penalize policy for model disagreement

, —K if d(s,a) > «
rp(s,a,s) = , |
r(s,a,s’) otherwise

Model disagreement:

d(s,a) — Il:Llan D (fi(°‘sva)afj<°‘saa))

MOReL: Model-Based Offline Reinforcement Learning
[Kidambi et al. 2020]

90

How to use ensemble?

* Sample random model for every transition
* Penalize policy for model disagreement

* Termination based on disagreement
zero rewards for

@ all future timesteps

"\ 7T N ' | ‘
® - > 0,0,0, ...

\ _/\—

large model
disagreement

MOReL: Model-Based Offline Reinforcement Learning
[Kidambi et al. 2020] 91

Uncertainty Estimation

* Ensembles
* Bayesian Neural Networks

* Dropout
e Normalized Maximum Likelihood

* Test Time Augmentation
* Etc...

92

Model-Predictive Control

Model-Based Policy Learning

T e

[RC

sj>

Can we skip this?

—>a

94

Q-Learning

lllllll
llllllll

L -l‘
lllllllllllll

Online Planning

96

Online Planning

-\" ”:' ‘A Rl _ Z ,,yt Ttl

L 4 -l‘

Online Planning

Online Planning

99

Online Planning

e Use dynamics model to predict expected return of every action

arg max B f(risy=s,aq,) (7))
a(): L
S) ag S1 a; 82 Spap Skl

100

Online Planning

e Use dynamics model to predict expected return of every action

arg max By p(rji=s.a,) LF(T)
A():k .
* Apply optimal action sequence a,.;. in real environment

S) ap 81 a8 Sg @ Skl
@ - >@ >'°"" >‘
0

1

101

Drift

predicted

trajectory

102

Drift

predicted

trajectory

103

Drift

predicted

trajectory

104

Drift

predicted

trajectory

105

Drift

________ real
JJJJJJJJJJJJJJJJJ trajectory

predicted
trajectory

106

Drift

________ real
JJJJJJJJJJJJJJJJJ trajectory

predicted
trajectory

107

Drift

________ real
JJJJJJJJJJJJJJJJJ trajectory

predicted
trajectory

(Open-Loop Control)

108

MPC

e Use dynamics model to predict expected return of every action

_4‘1
arg max B g (rjg)—s,a0,,) (7]
A():k
. Apol ool : x . | :
* Model Predictive Control (MPC)
* Apply only the first action in the real environment
* Replan every timestep

S() S1 4] Sk ag Sk

S92
QO —0—>@--- " >‘
T "

109

Drift

predicted

trajectory

110

Drift

predicted

trajectory

111

Drift

predicted

trajectory

112

Drift

predicted

trajectory

113

Drift

________ real
JJJJJJJJJJJJJJJJJ trajectory

predicted
trajectory

114

Drift

________ real
JJJJJJJJJJJJJJJJJ trajectory

predicted
trajectory

115

Drift

________ real
JJJJJJJJJJJJJJJJJ trajectory

predicted
trajectory

(Closed-Loop Control)

116

MPC

* How to solve optimization problem every timestep?
o o f(rlso=s,a0) LEE(T)
* Black-Box Optimization
 CEM, random shooting, etc.
* If differentiable model and reward function, use gradient ascent

e Can incorporate other model-based RL improvements
* Uncertainty estimation, ensembles, etc.

MPC

a

FZ F3
T A A A
s ' & ‘@& |
=] [=] =
S‘l) sz : ss |
¥ ¥ ¥ ¥
EEEEEEEE
0. 6l o, 62 o, 65 o, o,

Learning Latent Dynamics for Planning from Pixels
[Hafner et al. 2019] 118

Deep Dynamics Models for Learning Dexterous Manipulation
[Nagabandi et al. 2019]

MPC

MPC

Handwriting: Fixed Trajectory

—10
=15 QS ST
g
Z —20 Nagabandi et. al
& —— SAC
T _a5 —— NPG
& —— PDDM (Ours)
3 30
—35
—40

0.0 0.2 0.4 0.6 0.8 1.0
Number of datapoints (M)

Deep Dynamics Models for Learning

[Nagabandi et al. 2019]

Handwriting: Arbitrary Trajectories

—20.0

— SAC

—— PDDM (Ours)

0.0 0.1 0.2 0.3 0.4
Number of datapoints (M)

Dexterous Manipulation

Task Reward

Baoding Balls

0.0

Fr ““.':'.T""I""' M -vv:.‘w'!.',
ly v
— MBPO

—— PETS
Nagabandi et. al

— SAC

— NPG

—— PDDM (Ours)

—0.1

—0.2

0 50000 100000 150000

Number of datapoints

120

Model-Based RL

Policy Learning
* Learn model + policy
* Runtime policy inference is fast
* Policy is task-specific

* Typically better asymptotic
performance

Online Planning
* Learn model
* Runtime planning can be slow
* Model can be task-agnostic

* May need many samples during
online planning to find good
plans

Summary

 Model-Based RL
* DYNA
* Model Representations

* Uncertainty Estimation

* MPC

122

	Slide 1: Model-Based Reinforcement Learning
	Slide 2: Overview
	Slide 3: Taxonomy of RL Algorithms
	Slide 4: Reinforcement Learning
	Slide 5: Sample Complexity
	Slide 6: Sample Complexity
	Slide 7: Sample Complexity
	Slide 8: Sim-to-Real
	Slide 9: Dynamics Model
	Slide 10: Why Learn a Dynamics Model?
	Slide 11: Dynamics Model
	Slide 12: Learning Dynamics Model
	Slide 13: Model-Based RL
	Slide 14: Problem
	Slide 15: Problem
	Slide 16: Problem
	Slide 17: Problem
	Slide 18: Problem
	Slide 19: Problem
	Slide 20: Problem
	Slide 21: Problem
	Slide 22: Distribution Shift
	Slide 23: Model-Based RL
	Slide 24: DYNA
	Slide 25: DYNA
	Slide 26: DYNA
	Slide 27: DYNA
	Slide 28: DYNA
	Slide 29: DYNA
	Slide 30: DYNA
	Slide 31: DYNA
	Slide 32: DYNA
	Slide 33: DYNA
	Slide 34: Model Representation
	Slide 35: Deterministic Models
	Slide 36: Stochastic Models
	Slide 37: Stochastic Models
	Slide 38: Reward Model
	Slide 39: Model-Based Rollout
	Slide 40: Model-Based Rollout
	Slide 41: Drift
	Slide 42: Drift
	Slide 43: Model-Based Rollout
	Slide 44: Model-Based Rollout
	Slide 45: Model-Based Rollout
	Slide 46: Model-Based RL
	Slide 47: DYNA
	Slide 48: Differentiable Dynamics
	Slide 49: Differentiable Dynamics
	Slide 50: Differentiable Dynamics
	Slide 51: Differentiable Dynamics
	Slide 52: Differentiable Dynamics
	Slide 53: Differentiable Dynamics
	Slide 54: Differentiable Dynamics
	Slide 55: Differentiable Dynamics
	Slide 56: Differentiable Dynamics
	Slide 57: Differentiable Dynamics
	Slide 58: Model Exploitation
	Slide 59: 2 Types of Uncertainty
	Slide 60: 2 Types of Uncertainty
	Slide 61: 2 Types of Uncertainty
	Slide 62: 2 Types of Uncertainty
	Slide 63: 2 Types of Uncertainty
	Slide 64: Uncertainty Estimation
	Slide 65: Uncertainty Estimation
	Slide 66: Uncertainty Estimation
	Slide 67: Uncertainty Estimation
	Slide 68: Uncertainty Estimation
	Slide 69: Uncertainty Estimation
	Slide 70: Supervised Learning
	Slide 71: Supervised Learning
	Slide 72: Supervised Learning
	Slide 73: Supervised Learning
	Slide 74: Supervised Learning
	Slide 75: Uncertainty Estimation
	Slide 76: Ensemble
	Slide 77: Ensemble
	Slide 78: Ensemble
	Slide 79: How to train ensemble?
	Slide 80: How to train ensemble?
	Slide 81: How to use ensemble?
	Slide 82: How to use ensemble?
	Slide 83: How to use ensemble?
	Slide 84: How to use ensemble?
	Slide 85: How to use ensemble?
	Slide 86: How to use ensemble?
	Slide 87: How to use ensemble?
	Slide 88: How to use ensemble?
	Slide 89: How to use ensemble?
	Slide 90: How to use ensemble?
	Slide 91: How to use ensemble?
	Slide 92: Uncertainty Estimation
	Slide 93: Model-Predictive Control
	Slide 94: Model-Based Policy Learning
	Slide 95: Q-Learning
	Slide 96: Online Planning
	Slide 97: Online Planning
	Slide 98: Online Planning
	Slide 99: Online Planning
	Slide 100: Online Planning
	Slide 101: Online Planning
	Slide 102: Drift
	Slide 103: Drift
	Slide 104: Drift
	Slide 105: Drift
	Slide 106: Drift
	Slide 107: Drift
	Slide 108: Drift
	Slide 109: MPC
	Slide 110: Drift
	Slide 111: Drift
	Slide 112: Drift
	Slide 113: Drift
	Slide 114: Drift
	Slide 115: Drift
	Slide 116: Drift
	Slide 117: MPC
	Slide 118: MPC
	Slide 119: MPC
	Slide 120: MPC
	Slide 121: Model-Based RL
	Slide 122: Summary

