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Overview

 Model-Based RL
* DYNA
* Model Representations

* Uncertainty Estimation

* MPC



Taxonomy of RL Algorithms

* Model-Based Methods



Reinforcement Learning

Action

Environment

Reward

State



Sample Complexity

Simulation

Learning Agile Robotic Locomotion Skills by Imitating Animals
[Peng et al. 2020]
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Sample Complexity

Simulation Real World

Learning Agile Robotic Locomotion Skills by Imitating Animals
[Peng et al. 2020] v



Sim-to-Real

Building a good simulator is hard

Can we learn a simulator?

Simulation
(Low-Fidelity)

Reinforcement Learning for Robust Parameterized Locomotion Control of Bipedal Robots
[Li et al. 2021]



Dynamics Model

dynamics model



Why Learn a Dynamics Model?

Complex Dynamics

Simple Dynamics
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Dynamics Model

* Learn a dynamics model:

f(sls,a) = p(s']s, a)

Action . : . :
Train policy by interacting
| ; with learned model
Agent Environment /
t f

Reward

State
11



Learning Dynamics Model

* Collect data with a base policy 77()
Sy Qg S1 Qaj SO ST_1 a7 _

@ ~>@! >@ e oo O

* Dataset: D = {(S@', a;, S;,)}
* Fit a dynamics model via supervised learning

arg }rnax L(s,a,8)~D [10gf(5,‘57 a)}

>C
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Model-Based RL

* Collect data with a base policy 77()
Sy Qg S1 Qaj SO ST_1 a7 _

o—>0—>0---0—>0

* Dataset: D = {(S@', a;, S;,)}
* Fit a dynamics model via supervised learning

arg;nax “(s,a,8')~D logf(s']s, a)]

* Train new policy 7 by simulating withf(S,‘S, a)
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Problem

* Reward: climb as high as possible

0

b
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Q~~
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Problem

* Reward: climb as high as possible

Elevation increases
to the right
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Problem

* Reward: climb as high as possible
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Problem

* Reward: climb as high as possible
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Problem

* Reward: climb as high as possible
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Problem

* Reward: climb as high as possible
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Distribution Shift

e Data distribution is different from the policy’s distribution

D ~ p(s,alm) # p(s,a|n)

 Model f(s'|s, a) trained on D
* Low error under p(S, a|7r0) 4 X
* High error under p(S, a|7r)

e Can we make

p(s,alm) = p(s,a|m) !




Model-Based RL

* Collect data with a base policy 77()
Sy Qg S1 Qaj SO ST_1 a7 _

@ ~>@! >@ e oo O

>C

* Dataset: D = {(S@', a;, S;,)}
* Fit a dynamics model via supervised learning

arg }rnax L(s,a,8)~D [10gf(5,‘57 a)}

* Train new policy 7T by simulating Withf
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DYNA

ALGORITHM: DYNA

1: 7V « initialize policy

2: D« {0} initialize dataset
3: for iteration £ =0.....n — 1 do
4:  Sample trajectory 7 according to 7% (als)

5. Add transitions to dataset D = D U {(s;,a;,s})}

6:  Fit dynamics model:
f =arg max,; Eas)p|logf(s’]s, a)l

7. Tl ¢ train policy by simulating rollouts with f(s'[s. a)
8: end for

9: return ™"

Dyna, an Integrated Architecture for Learning, Planning, and Reacting

[Sutton 1991]
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DYNA

ALGORITHM: DYNA

1: 7 < initialize policy
2: D+ {(} initialize dataset

3: for iteration £ =0.....n — 1 do
4:  Sample trajectory 7 according to 7% (als)
5. Add transitions to dataset D = D U {(s;,a;,s})}

6:  Fit dynamics model:
f =arg max,; Eas)p|logf(s’]s, a)l
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8: end for

9: return ™"

Dyna, an Integrated Architecture for Learning, Planning, and Reacting

[Sutton 1991]
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DYNA

ALGORITHM: DYNA
1: 7 < initialize policy
2: D« {0} initialize dataset

. for iteration £ =10,....n — 1 do
ample trajectory 7 according to 7% (als)
Add transitions to dataset D = D U {(s;,a;,s;)}

6:  Fit dynamics model:
f =arg max,; Eas)p|logf(s’]s, a)l

7. Tl ¢ train policy by simulating rollouts with f(s'[s. a)
8: end for

9: return ™"

Dyna, an Integrated Architecture for Learning, Planning, and Reacting
[Sutton 1991] 26



DYNA

ALGORITHM: DYNA

1: 7 < initialize policy
2: D« {0} initialize dataset

3: for iteration £ =0.....n — 1 do
k

4:  Sample trajectory 7 according to 7"(als

by |

Add transitions to dataset D = D U {(s;,a;,s;)}

6:  Fit dynamics model:
f =arg max,; Eas)p|logf(s’]s, a)l

7. Tl ¢ train policy by simulating rollouts with f(s'[s. a)

8: end for

9: return ™"

Dyna, an Integrated Architecture for Learning, Planning, and Reacting
[Sutton 1991]
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ALGORITHM: DYNA
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3: for iteration £ =0.....n — 1 do
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Dyna, an Integrated Architecture for Learning, Planning, and Reacting
[Sutton 1991]
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DYNA

ALGORITHM: DYNA

1: 7 < initialize policy
2: D« {0} initialize dataset

3: for iteration £ =0.....n — 1 do
4:  Sample trajectory 7 according to 7% (als)
5. Add transitions to dataset D = D U {(s;,a;,s)}

6:  Fit dynamics model:
f =arg max,; Eas)p|logf(s’]s, a)l

7. Tl ¢ train policy by simulating rollouts with f(s'[s. a)
8: end for

9: return ™"

Dyna, an Integrated Architecture for Learning, Planning, and Reacting

[Sutton 1991]
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DYNA

ALGORITHM: DYNA

1: 7

0« initialize policy

2: D« {0} initialize dataset

3: for iteration £ =0.....n — 1 do

4:

5:

T

Sample trajectory 7 according to 7*(als)
Add transitions to dataset D = D U {(s;,a;,s;)}

Fit dynamics model:
f=arg max; Egasyop[logf(s'|s,a)]

7+ train policy by simulating rollouts with f(s'|s. a)

8: ena for

9: return ™"

Dyna, an Integrated Architecture for Learning, Planning, and Reacting

[Sutton 1991]
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DYNA

ALGORITHM: DYNA

1: 7 < initialize policy
2: D« {0} initialize dataset

3: for iteration £ =10....,n — 1 do
4:  Sample trajectory 7 according to 7% (als)
5. Add transitions to dataset D = D U {(s;,a;,s})}

6:  Fit dynamics model:
f =arg max,; Eas)p|logf(s’]s, a)l

7. Tl ¢ train policy by simulating rollouts with f(s'[s. a)
8: end for

9: return ™"

Dyna, an Integrated Architecture for Learning, Planning, and Reacting

[Sutton 1991]
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DYNA

ALGORITHM: DYNA

1: 7 < initialize policy
2: D« {0} initialize dataset

3: for iteration £ =0.....n — 1 do
4:  Sample trajectory 7 according to 7% (als)
5. Add transitions to dataset D = D U {(s;,a;,s})}

6:  Fit dynamics model:
f=arg max; Egasyop[logf(s'|s,a)]

9: return ™"

use any RL algorithm
(e.g. policy gradient, Q-learning, SAC, etc.)

Dyna, an Integrated Architecture for Learning, Planning, and Reacting

[Sutton 1991]
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DYNA

ALGORITHM: DYNA
1: 7 < initialize policy
2: D« {0} initialize dataset

3: for iteration £k =0.....n — 1 do keep data from
4: b all iterations

" tO T

Sample trajectorv 7 accordin

by |

6:  Fit dynamics model:
f =arg max,; Eas)p|logf(s’]s, a)l

7. Tl ¢ train policy by simulating rollouts with f(s'[s. a)
8: end for

9: return ™"

Dyna, an Integrated Architecture for Learning, Planning, and Reacting
[Sutton 1991] 33



Model Representation

» How do we represent f(s'[s, a)?
 MDP with small discrete states and actions = lookup table

fiik = f(sglsi, aj)
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Deterministic Models

» How do we represent f(s'[s, a)?

arg min {‘(s,a,s’)wD

f

What if the dynamics

are stochastic?
S :>
A

|18~ f(s, )"

>’
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Stochastic Models

» How do we represent f(s'[s, a)?

arg}nax U (s,a,8/)~D logf(s'|s,a)]

a=> f =4
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Stochastic Models

» How do we represent f(s'[s, a)?

arg}nax U (s,a,8/)~D logf(s'|s,a)]
\ l

|
Conditional Generative Model
e Variational Autoencoders (VAEs)
e Generative Adversarial Networks (GANSs)
* Flow Models
e Diffusion Models
* Etc.

37



Reward Model

* If reward function is unknown, augment model to predict both states
and rewards

* For most tasks, reward function is available/specified by a human

dynamics model reward model

f(s'ls,a) h(rls,a,s’)

38



Model-Based Rollout

ALGORITHM: DYNA

1: 7 < initialize policy
2: D« {0} initialize dataset

3: for iteration £ =0.....n — 1 do
4:  Sample trajectory 7 according to 7% (als)
5. Add transitions to dataset D = D U {(s;,a;,s})}

6:  Fit dynamics model:
f=arg max; Egasyop[logf(s'|s,a)]

generate trajectories
9: return 7" with model

Dyna, an Integrated Architecture for Learning, Planning, and Reacting

[Sutton 1991]
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Model-Based Rollout

— = = Real
----- Model

40



Drift

 Same action sequence in the real env and the model can lead to very
different trajectories

e Autoregressive model - compounding error

(T (T
| |

a() aj

41



Drift

Drift due to differences in
dynamics instead of actions

~ | | | L \

dddddaddddaggy
w
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Model-Based Rollout

— = = Real
----- Model

accurate in

beginnin
PR 4
—’——
2 T TN
P

S @

later timesteps
are less accurate
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Model-Based Rollout

- — = Re3| Generate shorter rollouts
----- Model
R
—’l
N -
S0 @ N -
N
\
~

But then policy will never
see later states
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Model-Based Rollout

Real Generate shorter rollouts
Model from different real states
, 4
A e 2
/5’: —
o o e,
0@ \ P
N
“t -
Nl o
\\
4 \
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Model-Based RL
model-based

model-based %

B 0.6 o _3
g g
=
§ ~0.8 g
-5
-1.0
—— NAF —6 —— NAF
- DDPG - DDPG
12 0 500 1000 1500 2000 2500 3000 =t 0 200 400 600 800 1000
episodes episodes
(a) Example task domains. (b) NAF and DDPG on multi-target reacher. (c) NAF and DDPG on peg insertion.

Continuous Deep Q-Learning with Model-based Acceleration
[GU et al. 2016] 46



DYNA

ALGORITHM: DYNA

1: 7 < initialize policy
2: D« {0} initialize dataset

3: for iteration £ =0.....n — 1 do
4:  Sample trajectory 7 according to 7% (als)
5. Add transitions to dataset D = D U {(s;,a;,s})}

6:  Fit dynamics model:
f=arg max; Egasyop[logf(s'|s,a)]

9: return ™"

use any RL algorithm
(e.g. policy gradient, Q-learning, SAC, etc.)

Dyna, an Integrated Architecture for Learning, Planning, and Reacting

[Sutton 1991]
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Differentiable Dynamics

arg max
s

arg 1max ETNf(T|7T)

4

4

“T~p(T|T)

T—1

2

t=0

T—1

2

t=0

t
A’

t
YT

/ ’
use any RL algorithm
(e.g. policy gradient, Q-learning, SAC, etc.)




Differentiable Dynamics

X X X
% _Jdri0da;  Orpoa;dsidag

00  day; 00  Da;dsiOag 00

49



Differentiable Dynamics

% _Jdri0da;  Orpoa;dsidag
00  day; 00  Da;dsiOag 00
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Differentiable Dynamics

% _ Orp0a;  0Orq0a

00  day; 90  Oay Os

881 8&0 |
8a0 00 |

Dynamics
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Differentiable Dynamics

Fully Differentiable!

% _Jdri0da;  Orpoa;dsidag
00  day; 00  Da;dsiOag 00
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Differentiable Dynamics

T—1
t
g max Brfrin) | ) 77
s
/ | t=0
Compute gradients using autodiff
and solve with gradient ascent
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Differentiable Dynamics

SuperTrack: Motion Tracking for Physically Simulated Characters Using Supervised Learning

[Fussell et al. 2021]




Differentiable Dynamics

~ & F
A e . 4

A1 Quadruped URS5 Multi-Object XArm Visual Pick Sphero Ollie Visual
Walking Visual Pick Place and Place Navigation

DayDreamer: World Models for Physical Robot Learning
[WU et al. 2022] 55



Differentiable Dynamics

DayDreamer: World Models for Physical Robot Learning
[Wu et al. 2022]
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Differentiable Dynamics

DayDreamer: World Models for Physical Robot Learning
[Wu et al. 2022]
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Model Exploitation

ALGORITHM: DYNA

1: 7 < initialize policy
2: D« {0} initialize dataset

3: for iteration £ =0.....n — 1 do
4:  Sample trajectory 7 according to 7% (als)
5. Add transitions to dataset D = D U {(s;,a;,s})}

Policy can exploit
6: it dynamics model: errors in model

f =arg max,; Eas)p|logf(s’]s, a)l

¢ train policy by simulating rollouts with f(s'|s, a)

9: return ™"

Dyna, an Integrated Architecture for Learning, Planning, and Reacting

[Sutton 1991]
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2 Types of Uncertainty

Aleatoric Epistemic
(Statistical Uncertainty) (Model Uncertainty)
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2 Types of Uncertainty

Aleatoric
(Statistical Uncertainty)
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2 Types of Uncertainty

Aleatoric Epistemic
(Statistical Uncertainty) (Model Uncertainty)
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2 Types of Uncertainty

Epistemic
(Model Uncertainty)

no data
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2 Types of Uncertainty

Aleatoric Epistemic
(Statistical Uncertainty) (Model Uncertainty)

Policy can exploit model uncertainty

63



Uncertainty Estimation

e Can we estimate the model uncertainty?

S
A

=¥

This only estimates
statistical uncertainty
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Uncertainty Estimation

e Can we estimate the model uncertainty?

* Bayesian inference:

p(f|D)

—

What is the likelihood of Lo .0.0..
a function given the data 0®°® °




Uncertainty Estimation

e Can we estimate the model uncertainty?

* Bayesian inference:

p(f|D)

—

What is the likelihood of
a function given the data

High Likelihood
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Uncertainty Estimation

e Can we estimate the model uncertainty?

* Bayesian inference:

p(f|D)

——

What is the likelihood of
a function given the data

High Likelihood

Low Likelihood
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Uncertainty Estimation

e Can we estimate the model uncertainty?

* Bayesian inference:

p(f|D) = o, D)

p(D)
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Uncertainty Estimation

e Can we estimate the model uncertainty?

* Bayesian inference:

p(f|D) = o, D)

p(D)
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Supervised Learning

arg max logp(f|D) = arg max log
f f

p(D|f)p(f)

p(D)
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Supervised Learning

arg }’Hax logp(f|D) = arg }”ﬂax 1ng<1ﬁ(f1))z;(f)

= arg Jgnax logp(D| f)+logp(f)—logp(D)
| | |

Posterior Likelihood Prior Constant

71



Supervised Learning

arg }’Hax logp(f|D) = arg }”ﬂax 1ng<1ﬁ(f1))z;(f)

= arg max logp(D| f)~+logp(f)—logp(D)
Likelihood

Y

Maximum Likelihood

arg}nax L (s,a,8/)~D logf(s'|s,a)]
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Supervised Learning

r - >

= F N




Supervised Learning

r - >

f>fo/\
fzy/r\/




Uncertainty Estimation

 Maximum likelihood only gives a point-wise approximation of the
posterior

* To estimate model uncertainty, need to approximate the full posterior
arg max logp(f|D)
/i \
Point-wise

. . Posterior
approximation
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Ensemble

Ensemble

* Approximate posterior with ensemble

r.::".".E i D

e




Ensemble

* Approximate posterior with ensemble
* Models should be consistent under the data distribution




Ensemble

* Approximate posterior with ensemble
* Models should be consistent under the data distribution
* Models will hopefully disagree on out-of-distribution samples

out-of-distribution out-of-distribution out-of-distribution
78



How to train ensemble?

Bootstrapping
* Split dataset into subsets
* Train a separate model for each subset

Dy—> f

Reduces data available
to train each model

DL —+D 1 fy

D)= f,

79



How to train ensemble?

Bootstrapping
Reduces data available

to train each model

* Split dataset into subsets
* Train a separate model for each subset

In practice:
* Initialize models with different random parameters

* Train all models using the same dataset
* Stochasticity from SGD leads to diverse models

80



How to use ensemble?

* Sample random model for every transition

‘‘‘‘‘

S()  A(

When to Trust Your Model: Model-Based Policy Optimization
[Janner et al. 2019]
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How to use ensemble?

* Sample random model for every transition

f T
\\

i Ll

/2 L RN

v
SO) A S1 adj S9

—0—>0

When to Trust Your Model: Model-Based Policy Optimization
[Janner et al. 2019]
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How to use ensemble?

* Sample random model for every transition

f T
\\

i Ll

/2 L RN

v
S) a9 S1 a} 852 ST—-1 a7 15T

O—0——0@°° - 0—>0

When to Trust Your Model: Model-Based Policy Optimization
[Janner et al. 2019]




How to use ensemble?

* Sample random model for every transition

Walker2d
6000
[
& 3000 = 5
3 | !
° % 4000 o
2 @
% 000 §1 g
— — Q
¢ 1000 g 2000 =
m Liv]
0 0
0 50k 100k 0 100k 200k 300k
steps steps

— MBPO} — SAC — PPO —— PETS

Ant Humanoid
6000 €000 0 =
e LT 7
=
[al]
S
2000 5 2000
=
m
0 0
0 100k 200k 300k 0 100k 200k 300k
steps steps
— STEVE — SLBO -- convergence

When to Trust Your Model: Model-Based Policy Optimization

[Janner et al. 2019]
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How to use ensemble?

* Sample random model for every transition

Walker2d
6000
[
c 3000 = =
3 | =
° % 4000 o
2 @
% 000 §1 g
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¢ 1000 g 2000 =
m Liv]
0 0
0 50k 100k 0 100k 200k 300k
steps steps
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Ant Humanoid
6000 €000 0 =
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=
[al]
S
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=
m
0 0
0 100k 200k 300k 0 100k 200k 300k
steps steps
— STEVE — SLBO -- convergence

When to Trust Your Model: Model-Based Policy Optimization

[Janner et al. 2019]
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How to use ensemble?

* Sample random model for every transition

* Penalize policy for model disagreement

r(s,a,s’)

MOReL: Model-Based Offline Reinforcement Learning
[Kidambi et al. 2020]
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How to use ensemble?

* Sample random model for every transition

* Penalize policy for model disagreement

—K if d(s,a) > «

/
rp(s,a,s’) =
p(s:a,s) r(s,a,s’) otherwise

MOReL: Model-Based Offline Reinforcement Learning
[Kidambi et al. 2020]
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How to use ensemble?

* Sample random model for every transition

* Penalize policy for model disagreement

, —K if d(s,a) > «
rp(s,a,s) = , e
r(s,a,s’) otherwise

MOReL: Model-Based Offline Reinforcement Learning
[Kidambi et al. 2020]
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How to use ensemble?

* Sample random model for every transition

* Penalize policy for model disagreement

, —K if d(s,a) > «
rp(s,a,s) = = |
r(s,a,s’) otherwise

MOReL: Model-Based Offline Reinforcement Learning
[Kidambi et al. 2020]
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How to use ensemble?

* Sample random model for every transition

* Penalize policy for model disagreement

, —K if d(s,a) > «
rp(s,a,s) = , |
r(s,a,s’) otherwise

Model disagreement:

d(s,a) — Il:Llan D (fi(°‘sva)afj<°‘saa))

MOReL: Model-Based Offline Reinforcement Learning
[Kidambi et al. 2020]

90



How to use ensemble?

* Sample random model for every transition
* Penalize policy for model disagreement

* Termination based on disagreement
zero rewards for

@ all future timesteps

"\ 7T N ' | ‘
® - > 0,0,0, ...

\ _/\—

large model
disagreement

MOReL: Model-Based Offline Reinforcement Learning
[Kidambi et al. 2020] 91



Uncertainty Estimation

* Ensembles
* Bayesian Neural Networks

* Dropout
e Normalized Maximum Likelihood

* Test Time Augmentation
* Etc...

92



Model-Predictive Control



Model-Based Policy Learning

T e

[RC

sj>

Can we skip this?

—>a
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Q-Learning

lllllll
llllllll
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Online Planning
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Online Planning

-\" ”:' ‘A Rl _ Z ,,yt Ttl

L 4 -l‘
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Online Planning




Online Planning
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Online Planning

e Use dynamics model to predict expected return of every action

arg max B f(risy=s,aq,) (7))
a(): L
S) ag  S1 a; 82 Spap Skl

100



Online Planning

e Use dynamics model to predict expected return of every action

arg max By p(rji=s.a,) LF(T)
A():k .
* Apply optimal action sequence a,.;. in real environment

S) ap 81 a8 Sg @ Skl
@ - >@ >'°"" >‘
0

1
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Drift

predicted

trajectory
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Drift

predicted

trajectory
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Drift

predicted

trajectory
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Drift

predicted

trajectory
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Drift

________ real
JJJJJJJJJJJJJJJJJ trajectory

predicted
trajectory
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Drift

________ real
JJJJJJJJJJJJJJJJJ trajectory

predicted
trajectory
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Drift

________ real
JJJJJJJJJJJJJJJJJ trajectory

predicted
trajectory

(Open-Loop Control)

108



MPC

e Use dynamics model to predict expected return of every action

_4‘1
arg max B g (rjg)—s,a0,,) (7]
A():k
. Apol ool : x . | :
* Model Predictive Control (MPC)
* Apply only the first action in the real environment
* Replan every timestep

S() S1 4] Sk ag Sk

S92
QO —0—>@--- " >‘
T "
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Drift

predicted

trajectory
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Drift

predicted

trajectory
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Drift

predicted

trajectory
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Drift

predicted

trajectory
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Drift

________ real
JJJJJJJJJJJJJJJJJ trajectory

predicted
trajectory
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Drift

________ real
JJJJJJJJJJJJJJJJJ trajectory

predicted
trajectory
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Drift

________ real
JJJJJJJJJJJJJJJJJ trajectory

predicted
trajectory

(Closed-Loop Control)
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MPC

* How to solve optimization problem every timestep?
o o f(rlso=s,a0) LEE(T)
* Black-Box Optimization
 CEM, random shooting, etc.
* If differentiable model and reward function, use gradient ascent

e Can incorporate other model-based RL improvements
* Uncertainty estimation, ensembles, etc.




MPC

a

FZ F3
T A A A
s ' & ‘@& |
=] [ =] =
S‘l ) sz : ss |
¥ ¥ ¥ ¥
EEEEEEEE
0. 6l o, 62 o, 65 o, o,

Learning Latent Dynamics for Planning from Pixels
[Hafner et al. 2019] 118



Deep Dynamics Models for Learning Dexterous Manipulation
[Nagabandi et al. 2019]




MPC

MPC

Handwriting: Fixed Trajectory

—10
=15 QS ST
g
Z —20 Nagabandi et. al
& —— SAC
T _a5 —— NPG
& —— PDDM (Ours)
3 30
—35
—40

0.0 0.2 0.4 0.6 0.8 1.0
Number of datapoints (M)

Deep Dynamics Models for Learning

[Nagabandi et al. 2019]

Handwriting: Arbitrary Trajectories

—20.0

— SAC

—— PDDM (Ours)
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Number of datapoints (M)

Dexterous Manipulation

Task Reward

Baoding Balls
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0 50000 100000 150000

Number of datapoints
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Model-Based RL

Policy Learning
* Learn model + policy
* Runtime policy inference is fast
* Policy is task-specific

* Typically better asymptotic
performance

Online Planning
* Learn model
* Runtime planning can be slow
* Model can be task-agnostic

* May need many samples during
online planning to find good
plans



Summary

 Model-Based RL
* DYNA
* Model Representations

* Uncertainty Estimation

* MPC
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