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Overview

• Model-Based RL

• DYNA

• Model Representations

• Uncertainty Estimation

• MPC
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Taxonomy of RL Algorithms

• Policy-Based Methods

• Value-Based Methods

• Actor-Critic Methods

• Model-Based Methods
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Reinforcement Learning

Agent Environment

Action

Reward

State
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Sample Complexity

Learning Agile Robotic Locomotion Skills by Imitating Animals
[Peng et al. 2020]

Simulation Real World
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Sample Complexity
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Simulation Real World
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Sim-to-Real

Reinforcement Learning for Robust Parameterized Locomotion Control of Bipedal Robots
[Li et al. 2021]

Simulation
(Low-Fidelity)

Real WorldSimulation
(High-Fidelity)

Building a good simulator is hard

Can we learn a simulator?
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Dynamics Model

dynamics model
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Why Learn a Dynamics Model?

Simple Dynamics Complex Dynamics
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• Learn a dynamics model:

Dynamics Model

Agent Environment

Action

Reward

State

Train policy by interacting
with learned model
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• Collect data with a base policy 

• Dataset: 

• Fit a dynamics model via supervised learning

Learning Dynamics Model
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• Collect data with a base policy 

• Dataset: 

• Fit a dynamics model via supervised learning

• Train new policy      by simulating with 

Model-Based RL
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• Reward: climb as high as possible

Problem
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• Reward: climb as high as possible

Problem

Elevation increases
to the right
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• Reward: climb as high as possible

Problem
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• Data distribution is different from the policy’s distribution

• Model                  trained on 

• Low error under 

• High error under

• Can we make

Distribution Shift



✓
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• Collect data with a base policy 

• Dataset: 

• Fit a dynamics model via supervised learning

• Train new policy      by simulating with 

Model-Based RL
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DYNA

Dyna, an Integrated Architecture for Learning, Planning, and Reacting
[Sutton 1991]
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DYNA

Dyna, an Integrated Architecture for Learning, Planning, and Reacting
[Sutton 1991]

use any RL algorithm
(e.g. policy gradient, Q-learning, SAC, etc.)
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DYNA

keep data from
all iterations

Dyna, an Integrated Architecture for Learning, Planning, and Reacting
[Sutton 1991]
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Model Representation

• How do we represent                  ?

• MDP with small discrete states and actions → lookup table



35

Deterministic Models

• How do we represent                  ?

What if the dynamics
are stochastic?
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Stochastic Models

• How do we represent                  ?
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Stochastic Models

• How do we represent                  ?

Conditional Generative Model
• Variational Autoencoders (VAEs)
• Generative Adversarial Networks (GANs)
• Flow Models
• Diffusion Models
• Etc.
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• If reward function is unknown, augment model to predict both states 
and rewards

• For most tasks, reward function is available/specified by a human

Reward Model

dynamics model reward model
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Model-Based Rollout

generate trajectories
with model

Dyna, an Integrated Architecture for Learning, Planning, and Reacting
[Sutton 1991]
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Model-Based Rollout

Real 

Model Drift
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Drift

• Same action sequence in the real env and the model can lead to very 
different trajectories

• Autoregressive model → compounding error
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Drift

Drift

Drift due to differences in
dynamics instead of actions
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Model-Based Rollout

Real 

Model

accurate in
beginning

later timesteps
are less accurate
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Model-Based Rollout

Real 

Model

Generate shorter rollouts

But then policy will never
see later states
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Model-Based Rollout

Real 

Model

Generate shorter rollouts
from different real states
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Model-Based RL

Continuous Deep Q-Learning with Model-based Acceleration
[Gu et al. 2016]

model-based
model-based
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DYNA

Dyna, an Integrated Architecture for Learning, Planning, and Reacting
[Sutton 1991]

use any RL algorithm
(e.g. policy gradient, Q-learning, SAC, etc.)
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Differentiable Dynamics

use any RL algorithm
(e.g. policy gradient, Q-learning, SAC, etc.)
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Differentiable Dynamics

✓ ✓ ✓
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Differentiable Dynamics

✓ ✓ ✓✓✓



51

Differentiable Dynamics

✓ ✓ ✓

Dynamics

✓✓
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Differentiable Dynamics

✓ ✓ ✓✓✓ ✓
Fully Differentiable!
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Differentiable Dynamics

Compute gradients using autodiff
and solve with gradient ascent
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Differentiable Dynamics

SuperTrack: Motion Tracking for Physically Simulated Characters Using Supervised Learning
[Fussell et al. 2021]
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Differentiable Dynamics

DayDreamer: World Models for Physical Robot Learning
[Wu et al. 2022]
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Differentiable Dynamics

DayDreamer: World Models for Physical Robot Learning
[Wu et al. 2022]
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Model Exploitation

Dyna, an Integrated Architecture for Learning, Planning, and Reacting
[Sutton 1991]

Policy can exploit
errors in model
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2 Types of Uncertainty

Aleatoric
(Statistical Uncertainty)

Epistemic
(Model Uncertainty)
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2 Types of Uncertainty

Epistemic
(Model Uncertainty)

no data



✓
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2 Types of Uncertainty

Aleatoric
(Statistical Uncertainty)

Epistemic
(Model Uncertainty)

Policy can exploit model uncertainty
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Uncertainty Estimation

• Can we estimate the model uncertainty?

This only estimates
statistical uncertainty
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• Can we estimate the model uncertainty?

• Bayesian inference:

Uncertainty Estimation

What is the likelihood of
a function given the data
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• Can we estimate the model uncertainty?

• Bayesian inference:

Uncertainty Estimation

What is the likelihood of
a function given the data

High Likelihood Low Likelihood
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• Can we estimate the model uncertainty?

• Bayesian inference:

Uncertainty Estimation
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• Can we estimate the model uncertainty?

• Bayesian inference:

Uncertainty Estimation
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Supervised Learning
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Supervised Learning

Posterior Likelihood Prior Constant
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Supervised Learning

Maximum Likelihood

Likelihood
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Supervised Learning

MLE
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Supervised Learning

MLE
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Uncertainty Estimation

• Maximum likelihood only gives a point-wise approximation of the 
posterior

• To estimate model uncertainty, need to approximate the full posterior

Posterior
Point-wise

approximation
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• Approximate posterior with ensemble

Ensemble

MLE

Ensemble
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• Approximate posterior with ensemble

• Models should be consistent under the data distribution

Ensemble
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• Approximate posterior with ensemble

• Models should be consistent under the data distribution

• Models will hopefully disagree on out-of-distribution samples

Ensemble

out-of-distribution out-of-distribution out-of-distribution
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Bootstrapping

• Split dataset into subsets

• Train a separate model for each subset

How to train ensemble?

Reduces data available
to train each model

MLE

MLE

MLE
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Bootstrapping

• Split dataset into subsets

• Train a separate model for each subset

In practice:

• Initialize models with different random parameters

• Train all models using the same dataset

• Stochasticity from SGD leads to diverse models

How to train ensemble?

Reduces data available
to train each model
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• Sample random model for every transition

How to use ensemble?

When to Trust Your Model: Model-Based Policy Optimization
[Janner et al. 2019]
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• Sample random model for every transition

• Penalize policy for model disagreement

How to use ensemble?

MOReL: Model-Based Offline Reinforcement Learning
[Kidambi et al. 2020]
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• Sample random model for every transition
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• Sample random model for every transition

• Penalize policy for model disagreement

How to use ensemble?

MOReL: Model-Based Offline Reinforcement Learning
[Kidambi et al. 2020]

Model disagreement:
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• Sample random model for every transition

• Penalize policy for model disagreement

• Termination based on disagreement

How to use ensemble?

MOReL: Model-Based Offline Reinforcement Learning
[Kidambi et al. 2020]

0, 0, 0, …

large model
disagreement

zero rewards for
all future timesteps
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• Ensembles

• Bayesian Neural Networks

• Dropout

• Normalized Maximum Likelihood

• Test Time Augmentation

• Etc…

Uncertainty Estimation
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Model-Predictive Control
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Model-Based Policy Learning

RL
Can we skip this?



95

Q-Learning
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Online Planning
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Online Planning
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Online Planning
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Online Planning

Planner
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Online Planning

• Use dynamics model to predict expected return of every action
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Online Planning

• Use dynamics model to predict expected return of every action

• Apply optimal action sequence            in real environment
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Drift

predicted
trajectory
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Drift

predicted
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Drift

predicted
trajectory
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Drift

predicted
trajectory
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Drift

real
trajectory

predicted
trajectory
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Drift

real
trajectory

predicted
trajectory
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Drift

Drift

real
trajectory

(Open-Loop Control)

predicted
trajectory
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MPC

• Use dynamics model to predict expected return of every action

• Apply optimal action sequence            in real environment

• Model Predictive Control (MPC)
• Apply only the first action in the real environment

• Replan every timestep
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Drift

predicted
trajectory



111

Drift

predicted
trajectory
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Drift

predicted
trajectory
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Drift

predicted
trajectory
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Drift

real
trajectory

replan

predicted
trajectory
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Drift

real
trajectory

predicted
trajectory
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Drift

real
trajectory

(Closed-Loop Control)

predicted
trajectory
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MPC

• How to solve optimization problem every timestep?

• Black-Box Optimization 
• CEM, random shooting, etc.

• If differentiable model and reward function, use gradient ascent

• Can incorporate other model-based RL improvements
• Uncertainty estimation, ensembles, etc.
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MPC

Learning Latent Dynamics for Planning from Pixels
[Hafner et al. 2019]
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MPC

Deep Dynamics Models for Learning  Dexterous Manipulation
[Nagabandi et al. 2019]
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MPC

Deep Dynamics Models for Learning  Dexterous Manipulation
[Nagabandi et al. 2019]

MPC
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Model-Based RL

Policy Learning

• Learn model + policy

• Runtime policy inference is fast

• Policy is task-specific

• Typically better asymptotic 
performance

Online Planning

• Learn model

• Runtime planning can be slow

• Model can be task-agnostic

• May need many samples during 
online planning to find good 
plans
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Summary

• Model-Based RL

• DYNA

• Model Representations

• Uncertainty Estimation

• MPC
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