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Overview

• Actor-Critic Algorithms

• Deterministic Policy Gradient

• Soft Actor-Critic

• Surrogate Objective
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• Learn only the Q-function

• Q-function implicitly encodes policy

Value-Based Methods
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Often much more sample efficient than policy gradient

Off-policy learning

Limited to relatively small discrete action spaces

Does not directly optimize performance

- Lower Bellman error ≠ better performance

No convergence guarantees with function approximators

Q-Learning

Intractable in large/continuous
action spaces

✓






✓
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Policy Gradient

Directly optimize           by estimating gradient

General: can be applied to continuous and discrete states and actions

High-variance gradient estimator → unstable/slow convergence

Very sample inefficient

✓





✓
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Taxonomy of RL Algorithms

• Policy-Based Methods

• Value-Based Methods

• Actor-Critic Methods

• Model-Based Methods
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Taxonomy of RL Algorithms

• Policy-Based Methods

• Value-Based Methods

• Actor-Critic Methods

• Model-Based Methods
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Nondifferentiable Objective

nondifferentiable
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Policy Gradient

make this
differentiable?
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Policy Gradient

differentiable
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Surrogate Objective

Differentiable surrogate objective → just use gradient ascent!
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• Jointly learn both policy and value function

• Use value function to improve policy

Actor-Critic Methods

Value/Q-Function Policy
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Actor-Critic Algorithms

n-step return:

bootstrap

Variance reduction
via bootstrapping
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Bootstrapped Policy Gradient

estimate return baseline
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Bootstrapped Policy Gradient

need to rollout
entire episode

only need to execute
a single timestep
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Actor = Policy

Critic = Value/Q-function

Actor-Critic Algorithm

Actor Critic

feedback
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• Combine Q-learning and policy gradient

• General and much more efficient algorithm

Actor-Critic Algorithm
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Policy Gradient
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Policy Gradient
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Policy Gradient



22

Policy Gradient

“reward-to-go”
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Policy Gradient
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Why is policy gradient so inefficient?

• Estimating gradient requires estimating the return of policy

• Estimating the return requires rolling out the policy

Policy Gradient
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Idea: Replace Monte-Carlo return estimator with a learned Q-function

Can estimate gradients without collecting new data

Actor-Critic Algorithm



26

Surrogate Objective

nondifferentiabledifferentiable✓ 
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Deterministic Policy Gradient (DPG)

Deterministic Policy Gradient Algorithms [Silver et al. 2014]
Continuous control with deep reinforcement learning [Lillicrap et al. 2016]

Stochastic Policy:
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Deterministic Policy Gradient (DPG)

Deterministic Policy Gradient Algorithms [Silver et al. 2014]
Continuous control with deep reinforcement learning [Lillicrap et al. 2016]

Deterministic Policy:

nondifferentiable
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Deterministic Policy Gradient (DPG)

Deterministic Policy Gradient Algorithms [Silver et al. 2014]
Continuous control with deep reinforcement learning [Lillicrap et al. 2016]
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Deterministic Policy Gradient (DPG)

Deterministic Policy Gradient Algorithms [Silver et al. 2014]
Continuous control with deep reinforcement learning [Lillicrap et al. 2016]

Directly backprop from      to
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Deterministic Policy Gradient (DPG)

Deterministic Policy Gradient Algorithms [Silver et al. 2014]
Continuous control with deep reinforcement learning [Lillicrap et al. 2016]

deterministic
no variance

stochastic
high variance

Monte-Carlo Return Estimator:
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Deterministic Policy Gradient (DPG)

Deterministic Policy Gradient Algorithms [Silver et al. 2014]
Continuous control with deep reinforcement learning [Lillicrap et al. 2016]

Directly backprop from      to

How to train Q-function?
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• Max over actions needed for learning the optimal Q-function

• Learn        instead of 

Deterministic Policy Gradient (DPG)

Deterministic Policy Gradient Algorithms [Silver et al. 2014]
Continuous control with deep reinforcement learning [Lillicrap et al. 2016]

Intractable in continuous
action spaces
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Optimal Q-function:

Recursive Definition

Only true for optimal Q-function

True for all policies
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Optimal Q-function:

General policy:

Recursive Definition
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Deterministic Policy Gradient (DPG)
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Deterministic Policy Gradient (DPG)

Continuous control with deep reinforcement learning [Lillicrap et al. 2016]
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Deterministic Policy Gradient (DPG)

Continuous control with deep reinforcement learning [Lillicrap et al. 2016]
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Deterministic Policy Gradient (DPG)

Continuous control with deep reinforcement learning [Lillicrap et al. 2016]
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Deterministic Policy Gradient (DPG)

Continuous control with deep reinforcement learning [Lillicrap et al. 2016]
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Deterministic Policy Gradient (DPG)
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Deterministic Policy Gradient (DPG)

Continuous control with deep reinforcement learning [Lillicrap et al. 2016]
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Deterministic Policy Gradient (DPG)

Continuous control with deep reinforcement learning [Lillicrap et al. 2016]
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Deterministic Policy

Deterministic Policy Gradient Algorithms [Silver et al. 2014]
Continuous control with deep reinforcement learning [Lillicrap et al. 2016]

Directly backprop from      to
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Stochastic Policy

?
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Stochastic Policy

Score Function

high variance

Better method: reparameterization trick
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Reparameterization Trick

Gaussian policy:



51

Reparameterization Trick

Reparameterization Trick
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Reparameterization Trick

Reparameterization Trick
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Reparameterization Trick

Reparameterization Trick
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Soft Actor-Critic (SAC)

Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor
[Haarnoja et al. 2018]

Reparameterization Trick
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Soft Actor-Critic (SAC)

Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor
[Haarnoja et al. 2018]
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Soft Actor-Critic (SAC)

Soft Actor-Critic Algorithms and Applications
[Haarnoja et al. 2019]
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Soft Actor-Critic (SAC)

Soft Actor-Critic Algorithms and Applications
[Haarnoja et al. 2019]

20 hours later
300k samples
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Soft Actor-Critic (SAC)
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Soft Actor-Critic (SAC)

Soft Actor-Critic Algorithms and Applications
[Haarnoja et al. 2019]

2 hours later
160k samples
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Soft Actor-Critic (SAC)

Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor
[Haarnoja et al. 2018]
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Continuous Actions

Reparameterization Trick
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Discrete Actions

Reparameterization Trick
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Discrete Actions

Reparameterization Trick
Directly compute expectation✓
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Discrete Actions

Soft Actor-Critic for Discrete Action Settings
[Petros et al. 2019]
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Discrete Actions

Soft Actor-Critic for Discrete Action Settings
[Petros et al. 2019]
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Discrete Actions

dot product

Soft Actor-Critic for Discrete Action Settings
[Petros et al. 2019]
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Surrogate Objective
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Surrogate Objective
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Surrogate Objective

Original objective:

Surrogate objective:

: behavior policy
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Surrogate Objective
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Surrogate Objective
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Surrogate Objective

is trying to maximize return starting in states visited by  
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Surrogate Objective
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Soft Actor-Critic (SAC)

Only take a few grad steps
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Soft Actor-Critic (SAC)
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Behavior Policy

• Behavior policy doesn’t have to correspond to just a single policy

• Keep data from all previous iterations

• Train policy using data collected from all previous policies

• Much more sample efficient
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Summary

• Actor-Critic Algorithms

• Deterministic Policy Gradient

• Soft Actor-Critic

• Surrogate Objective
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