Policy Search

CMPT 729 G100

Jason Peng

Overview

- Policy Optimization
- Black Box Optimization
- Evolutionary Methods
- Finite-Difference Methods

$\{(\mathbf{o}_0, \mathbf{a}_0), (\mathbf{o}_1, \mathbf{a}_1), ...\}$

$= \sum_{\pi} \lim_{\pi} \mathbb{E}_{(\mathbf{o},\mathbf{a})} \sim \mathcal{D}\left[-\log \pi(\mathbf{a}|\mathbf{o})\right]$

Dataset

Behavioral Cloning

Supervised Learning

Policy

 $\partial \theta$

Random Search

- Parameter space: $\theta \in \Theta$
- Each parameter is bounded: $heta_i \in [heta_i^{\min}, heta_i^{\max}]$
- Idea: just sample randomly

Random Search

- Parameter space: $\theta \in \Theta$
- Each parameter is bounded: $heta_i \in [heta_i^{\min}, heta_i^{\max}]$
- Idea: just sample randomly

Pick θ with highest expected return

Random Search for Hyper-Parameter Optimization [Bergstra and Bengio 2012]

Grid Search

- Parameter space: $\theta \in \Theta$
- Each parameter is bounded: $\theta_i \in [\theta_i^{\min}, \theta_i^{\max}]$
- Idea: discretize space and evaluate

Extremely simple

Trivially parallel

 \checkmark Can work well for small number of parameters (< 10)

Curse of dimensionality

Probably won't find an optimum

Smarter Search

• Adapt search samples base on objective

Smarter Search

• Adapt search samples base on objective

Random Search

• Random Search

Random Search

• Random Search

search distribution

Evolutionary Methods

• Adapt search samples base on objective

ALGORITHM 4: CEM

1: $q^0 \leftarrow$ initialize search distribution

- 2: for iteration i = 0, ..., k 1 do
- 3: Sample parameters $\theta_1, ..., \theta_n \sim q^i(\theta)$
- 4: Evaluate performance of samples $J(\theta_1), ..., J(\theta_n)$
- 5: Select elite samples with highest performance $\hat{\theta}_1, ..., \hat{\theta}_m$
- 6: Update search distribution with elite samples: $q^{i+1} = \arg \max_{q} \frac{1}{m} \sum_{j=1}^{m} \log q(\hat{\theta}_{j})$
- 7: end for

ALGORITHM 4: CEM

- 1: $q^0 \leftarrow$ initialize search distribution
- 2: for iteration i = 0, ..., k 1 do
- 3: Sample parameters $\theta_1, ..., \theta_n \sim q^i(\theta)$
- 4: Evaluate performance of samples $J(\theta_1), ..., J(\theta_n)$
- 5: Select elite samples with highest performance $\hat{\theta}_1, ..., \hat{\theta}_m$
- 6: Update search distribution with elite samples: $q^{i+1} = \arg \max_{q} \frac{1}{m} \sum_{j=1}^{m} \log q(\hat{\theta}_j)$
- 7: end for

ALGORITHM 4: CEM

- 1: $q^0 \leftarrow$ initialize search distribution
- 2: for iteration i = 0, ..., k 1 do
- 3: Sample parameters $\theta_1, ..., \theta_n \sim q^i(\theta)$
- 4: Evaluate performance of samples $J(\theta_1), ..., J(\theta_n)$
- 5: Select elite samples with highest performance $\hat{\theta}_1, ..., \hat{\theta}_m$
- 6: Update search distribution with elite samples: $q^{i+1} = \arg \max_{q} \frac{1}{m} \sum_{j=1}^{m} \log q(\hat{\theta}_{j})$
- 7: end for

ALGORITHM 4: CEM

- 1: $q^0 \leftarrow$ initialize search distribution
- 2: for iteration i = 0, ..., k 1 do
- 3: Sample parameters $\theta_1, ..., \theta_n \sim q^i(\theta)$
- 4: Evaluate performance of samples $J(\theta_1), ..., J(\theta_n)$
- 5: Select elite samples with highest performance $\theta_1, ..., \hat{\theta}_m$
- 6: Update search distribution with elite samples: $q^{i+1} = \arg \max_{q} \frac{1}{m} \sum_{j=1}^{m} \log q(\hat{\theta}_{j})$
- 7: end for

ALGORITHM 4: CEM

- 1: $q^0 \leftarrow$ initialize search distribution
- 2: for iteration i = 0, ..., k 1 do
- 3: Sample parameters $\theta_1, ..., \theta_n \sim q^i(\theta)$
- 4: Evaluate performance of samples $J(\theta_1), ..., J(\theta_n)$
- 5: Select elite samples with highest performance $\hat{\theta}_1, ..., \hat{\theta}_m$
- 6: Update search distribution with elite samples: $q^{i+1} = \arg \max_{q} \frac{1}{m} \sum_{j=1}^{m} \log q(\hat{\theta}_j)$
- 7: end for

ALGORITHM 4: CEM

- 1: $q^0 \leftarrow$ initialize search distribution
- 2: for iteration i = 0, ..., k 1 do
- 3: Sample parameters $\theta_1, ..., \theta_n \sim q^i(\theta)$
- 4: Evaluate performance of samples $J(\theta_1), ..., J(\theta_n)$
- 5: Select elite samples with highest performance $\hat{\theta}_1, ..., \hat{\theta}_m$

6: Update search distribution with elite samples:

$$q^{i+1} = \arg \max_{q} \frac{1}{m} \sum_{j=1}^{m} \log q(\hat{\theta}_j)$$

7: end for

ALGORITHM 4: CEM

- 1: $q^0 \leftarrow$ initialize search distribution
- 2: for iteration i = 0, ..., k 1 do
- 3: Sample parameters $\theta_1, ..., \theta_n \sim q^i(\theta)$
- 4: Evaluate performance of samples $J(\theta_1), ..., J(\theta_n)$
- 5: Select elite samples with highest performance $\hat{\theta}_1, ..., \hat{\theta}_m$
- 6: Update search distribution with elite samples: $q^{i+1} = \arg \max_{q} \frac{1}{m} \sum_{j=1}^{m} \log q(\hat{\theta}_{j})$
- 7: end for

ALGORITHM 4: CEM

- 1: $q^0 \leftarrow$ initialize search distribution
- 2: for iteration i = 0, ..., k 1 do
- 3: Sample parameters $\theta_1, ..., \theta_n \sim q^i(\theta)$
- 4: Evaluate performance of samples $J(\theta_1), ..., J(\theta_n)$
- 5: Select elite samples with highest performance $\hat{\theta}_1, ..., \hat{\theta}_m$

6: Update search distribution with elite samples:

$$q^{i+1} = \arg \max_{q} \frac{1}{m} \sum_{j=1}^{m} \log q(\hat{\theta}_{j})$$
7: end for

$$q^i = \mathcal{N}\left(\mu^i, \Sigma^i\right)$$

$$\arg\max_{q} \frac{1}{m} \sum_{j=1}^{m} \log q(\hat{\theta}_{j}) \qquad \text{where} \quad q = \mathcal{N}(\mu, \Sigma)$$

$$\nabla_q \frac{1}{m} \sum_{j=1}^{n} \log q(\hat{\theta}_j) = 0$$

$$\nabla_q \frac{1}{m} \sum_{j=1}^m -\frac{1}{2} \left(\hat{\theta}_j - \mu \right)^T \Sigma^{-1} \left(\hat{\theta}_j - \mu \right) - \frac{1}{2} \log \det \left(\Sigma \right) + C = 0$$

$$\nabla_{\mu} \frac{1}{m} \sum_{j=1}^{m} -\frac{1}{2} \left(\hat{\theta}_{j} - \mu \right)^{T} \Sigma^{-1} \left(\hat{\theta}_{j} - \mu \right) - \frac{1}{2} \log \det \left(\Sigma \right) + C = 0$$
$$= \frac{1}{m} \sum_{j=1}^{m} \Sigma^{-1} \left(\hat{\theta}_{j} - \mu \right) = 0$$

$$= \frac{1}{m} \sum_{j=1} \Sigma \Sigma^{-1} \left(\hat{\theta}_j - \mu \right) = \Sigma 0$$

$$\nabla_{\mu} \frac{1}{m} \sum_{j=1}^{m} -\frac{1}{2} \left(\hat{\theta}_{j} - \mu \right)^{T} \Sigma^{-1} \left(\hat{\theta}_{j} - \mu \right) - \frac{1}{2} \log \det \left(\Sigma \right) + C = 0$$
$$= \frac{1}{m} \sum_{j=1}^{m} \Sigma^{-1} \left(\hat{\theta}_{j} - \mu \right) = 0$$

$$=\frac{1}{m}\sum_{j=1}^{m}\Sigma\Sigma^{-1}\left(\hat{\theta}_{j}-\mu\right)=\Sigma0$$

$$=\frac{1}{m}\sum_{j=1}^{m}\left(\hat{\theta}_{j}-\mu\right)=0$$

$$\nabla_{\Sigma} \frac{1}{m} \sum_{j=1}^{m} -\frac{1}{2} \left(\hat{\theta}_{j} - \mu \right)^{T} \Sigma^{-1} \left(\hat{\theta}_{j} - \mu \right) - \frac{1}{2} \log \det \left(\Sigma \right) + C = 0$$

$$= \sum_{i=1}^{d} \log \sigma_{i} \qquad \Sigma = \begin{bmatrix} \sigma_{i} \\ \ddots \\ \sigma_{d} \end{bmatrix}$$

$$\nabla \sigma_i \frac{1}{m} \sum_{j=1}^m -\frac{1}{2\sigma_i} \left(\hat{\theta}_{j,i} - \underline{\mu_i^*}\right)^2 - \frac{1}{2} \log \sigma_i = 0$$

$$\nabla \sigma_i \frac{1}{m} \sum_{j=1}^m -\frac{1}{2\sigma_i} \left(\hat{\theta}_{j,i} - \mu_i^*\right)^2 - \frac{1}{2} \log \sigma_i = 0$$
$$= \frac{1}{2\sigma_i^2} \frac{1}{m} \sum_{j=1}^m \left(\hat{\theta}_{j,i} - \mu_i^*\right)^2 - \frac{1}{2\sigma_i} = 0$$

$$\frac{1}{2\sigma_i^2} \frac{1}{m} \sum_{j=1}^m \left(\hat{\theta}_{j,i} - \mu_i^*\right)^2 = \frac{1}{2\sigma_i}$$

$$\sigma_i^* = \frac{1}{m} \sum_{j=1}^m \left(\hat{\theta}_{j,i} - \mu_i^*\right)^2$$

ALGORITHM 4: CEM

1: $q^0 \leftarrow$ initialize search distribution

$$q^{i} = \mathcal{N}\left(\mu^{i}, \Sigma^{i}\right)$$

- 2: for iteration i = 0, ..., k 1 do
- 3: Sample parameters $\theta_1, ..., \theta_n \sim q^i(\theta)$
- 4: Evaluate performance of samples $J(\theta_1), ..., J(\theta_n)$
- 5: Select elite samples with highest performance $\hat{\theta}_1, ..., \hat{\theta}_m$

Covariance Matrix Adaptation (CMA)

The CMA Evolution Strategy: A Comparing Review [Hansen 2006]

Evolution Strategy Applications

Visual Foresight: Model-Based Deep Reinforcement Learning for Vision-Based Robotic Control [Ebert et al. 2015]

Evolution Strategy Applications

Flexible Muscle-Based Locomotion for Bipedal Creatures [Geijtenbeek et al. 2013]

✓ Highly parallelizable

✓ Can work well for < 100 parameters

Slow convergence

X Difficult to scale to large numbers of parameters

Nondifferentiable Objective

- Start with initial guess $\, heta^0$
- Approximate partial derivatives using finite-differences

- Start with initial guess $\, heta^0$
- Approximate partial derivatives using finite-differences

- Start with initial guess $\, heta^0$
- Approximate partial derivatives using finite-differences

- Start with initial guess $\, heta^0$
- Approximate partial derivatives using finite-differences

- Start with initial guess $\, heta^0$

Approximate partial derivatives using finite-differences

Policy Gradient Reinforcement Learning for Fast Quadrupedal Locomotion [Kohl and Stone 2004]

- Start with initial guess $\, heta^0$
- Approximate partial derivatives using finite-differences

$$\triangle_j = \frac{J(\pi_{\theta+\epsilon_j}) - J(\pi_{\theta-\epsilon_j})}{2\epsilon}$$

-• Update: $\theta \leftarrow \theta + \alpha \triangle$

– for every j

2*n* evaluations per iterations

 $\begin{array}{c} \theta_i + \epsilon_0 \bullet \theta_{i+1} \\ \bullet \\ \theta_i \end{array} \\ \bullet \\ \theta_i + \epsilon_1 \end{array}$

Directional Derivative

Directional Derivative

Finite-Differences (Directional Derivative)

- Start with initial guess $heta^0$
- - Approximate directional derivative

 $\Delta = \frac{J(\pi_{\theta + \epsilon\delta}) - J(\pi_{\theta - \epsilon\delta})}{2} \delta$ fewer evaluations per iteration

$$\Delta = \frac{2\epsilon}{2\epsilon}$$

$$-\bullet \text{ Update: } \theta \leftarrow \theta + \alpha \Delta$$

$$\text{"directional derivative"}$$

Augmented Random Search (ARS)

		Maximum average reward after $\#$ timesteps				
Task	# timesteps	\mathbf{ARS}	PPO	A2C	CEM	TRPO
Swimmer-v1	10^{6}	361	≈ 110	≈ 30	≈ 0	≈ 120
Hopper-v1	10^{6}	3047	$\approx \! 2300$	≈ 900	≈ 500	≈ 2000
HalfCheetah-v1	10^{6}	2345	$\approx \! 1900$	$\approx \! 1000$	≈ -400	≈ 0
Walker2d-v1	10^{6}	894	$\approx\!3500$	≈ 900	≈ 800	≈ 1000

Simple Random Search Provides a Competitive Approach to Reinforcement Learning [Mania et al. 2018]

ARS Applications

Policies Modulating Trajectory Generators [Iscen et al. 2018]

Summary

- Policy Optimization
- Black Box Optimization
- Evolutionary Methods
- Finite-Difference Methods