Behavioral Cloning

CMPT 729 G100

Jason Peng

Overview

- Behavioral Cloning
- Drift
- Theoretical Analysis
- DAgger
- Applications

Agent-Environment Interface

Supervised Learning

 $\{(\mathbf{o}_0, \mathbf{a}_0), (\mathbf{o}_1, \mathbf{a}_1), ...\}$

Dataset

Supervised Learning

 $\{(\mathbf{o}_0, \mathbf{a}_0), (\mathbf{o}_1, \mathbf{a}_1), ...\}$

Dataset

Nvidia Automotive Simulation [NVIDIA]

 $\{(\mathbf{o}_0, \mathbf{a}_0), (\mathbf{o}_1, \mathbf{a}_1), ...\}$

$\sum_{\pi} \sum_{\pi} \mathbb{E}_{(\mathbf{o},\mathbf{a})\sim \mathcal{D}} \left[-\log \pi(\mathbf{a}|\mathbf{o})\right]$

Dataset

Behavioral Cloning

Behavioral Cloning

Behavioral Cloning

Figure 1: ALVINN Architecture

ALVINN: An Autonomous Land Vehicle in a Neural Network [Pomerleau 1989]

- Expert is too good
- Lack of corrective feedback
- Policy inaccuracies
- Errors compound over time

- Expert is too good
- Lack of corrective feedback
- Policy inaccuracies
- Errors compound over time

Feedback

Feedback

Feedback

Noise Injection

Noise Injection

1: $\mathcal{D} \leftarrow \emptyset$ initialize dataset

- 2: for timestep t do
- 3: $\mathbf{o_t} \leftarrow \text{record observation}$
- 4: $\mathbf{a}_{\mathbf{t}}^* \leftarrow$ query expert for an action
- 5: $\epsilon_t \leftarrow \text{sample noise}$
- 6: $\mathbf{a}_t \leftarrow \mathbf{a}_t^* + \epsilon_t$
- 7: Apply $\mathbf{a_t}$ to environment
- 8: Store $(\mathbf{o}_t, \mathbf{a}_t^*)$ in dataset \mathcal{D} 9: end for

10:
$$\pi^{\mathrm{BC}} = \arg \min_{\pi} \mathbb{E}_{(\mathbf{o}_i, \mathbf{a}_i) \sim \mathcal{D}} \left[-\log \pi(\mathbf{a}_i | \mathbf{o}_i) \right]$$

11: return π^{BC}

1: $\mathcal{D} \leftarrow \emptyset$ initialize dataset

2: for timestep t do

- 3: $\mathbf{o_t} \leftarrow \text{record observation}$
- 4: $\mathbf{a}_{\mathbf{t}}^* \leftarrow$ query expert for an action
- 5: $\epsilon_t \leftarrow \text{sample noise}$
- 6: $\mathbf{a}_t \leftarrow \mathbf{a}_t^* + \epsilon_t$
- 7: Apply $\mathbf{a_t}$ to environment
- 8: Store $(\mathbf{o}_t, \mathbf{a}_t^*)$ in dataset \mathcal{D} 9: end for

10:
$$\pi^{BC} = \arg \min_{\pi} \mathbb{E}_{(\mathbf{o}_i, \mathbf{a}_i) \sim \mathcal{D}} \left[-\log \pi(\mathbf{a}_i | \mathbf{o}_i) \right]$$

11: return π^{BC}

1: $\mathcal{D} \leftarrow \emptyset$ initialize dataset

2: for timestep t do

3: $\mathbf{o_t} \leftarrow \text{record observation}$ 4: $\mathbf{a_t^*} \leftarrow \text{query expert for an action}$

- 5: $\epsilon_t \leftarrow \text{sample noise}$
- 6: $\mathbf{a}_t \leftarrow \mathbf{a}_t^* + \epsilon_t$
- 7: Apply $\mathbf{a_t}$ to environment
- 8: Store $(\mathbf{o}_t, \mathbf{a}_t^*)$ in dataset \mathcal{D} 9: end for

10:
$$\pi^{\mathrm{BC}} = \arg \min_{\pi} \mathbb{E}_{(\mathbf{o}_i, \mathbf{a}_i) \sim \mathcal{D}} \left[-\log \pi(\mathbf{a}_i | \mathbf{o}_i) \right]$$

11: return π^{BC}

1: $\mathcal{D} \leftarrow \emptyset$ initialize dataset

- 2: for timestep t do
- 3: $\mathbf{o_t} \leftarrow \text{record observation}$
- 4: $\mathbf{a}_{\mathbf{t}}^* \leftarrow$ query expert for an action
- 5: $\epsilon_t \leftarrow \text{sample noise}$
- 6: $\mathbf{a}_t \leftarrow \mathbf{a}_t^* + \epsilon_t$
- 7: Apply $\mathbf{a_t}$ to environment
- 8: Store $(\mathbf{o}_t, \mathbf{a}_t^*)$ in dataset \mathcal{D} 9: end for

10:
$$\pi^{\mathrm{BC}} = \arg \min_{\pi} \mathbb{E}_{(\mathbf{o}_i, \mathbf{a}_i) \sim \mathcal{D}} \left[-\log \pi(\mathbf{a}_i | \mathbf{o}_i) \right]$$

11: return π^{BC}

1: $\mathcal{D} \leftarrow \emptyset$ initialize dataset

- 2: for timestep t do
- 3: $\mathbf{o_t} \leftarrow \text{record observation}$
- 4: $\mathbf{a}_{\mathbf{t}}^* \leftarrow \text{query expert for an action}$

5:
$$\epsilon_t \leftarrow \text{sample noise}$$

6:
$$\mathbf{a}_t \leftarrow \mathbf{a}_t^* + \epsilon_t$$

- 7: Apply $\mathbf{a_t}$ to environment
- 8: Store $(\mathbf{o}_t, \mathbf{a}_t^*)$ in dataset \mathcal{D} 9: end for

10:
$$\pi^{\mathrm{BC}} = \arg \min_{\pi} \mathbb{E}_{(\mathbf{o}_i, \mathbf{a}_i) \sim \mathcal{D}} \left[-\log \pi(\mathbf{a}_i | \mathbf{o}_i) \right]$$

11: return π^{BC}

1: $\mathcal{D} \leftarrow \emptyset$ initialize dataset

- 2: for timestep t do
- 3: $\mathbf{o_t} \leftarrow \text{record observation}$
- 4: $\mathbf{a}_{\mathbf{t}}^* \leftarrow \text{query expert for an action}$

5:
$$\epsilon_t \leftarrow \text{sample noise}$$

6:
$$\mathbf{a}_t \leftarrow \mathbf{a}_t^* + \epsilon_t$$

- 7: Apply $\mathbf{a_t}$ to environment
- 8: Store $(\mathbf{o}_t, \mathbf{a}_t^*)$ in dataset \mathcal{D} 9: end for

10:
$$\pi^{\mathrm{BC}} = \arg \min_{\pi} \mathbb{E}_{(\mathbf{o}_i, \mathbf{a}_i) \sim \mathcal{D}} \left[-\log \pi(\mathbf{a}_i | \mathbf{o}_i) \right]$$

11: return π^{BC}

1: $\mathcal{D} \leftarrow \emptyset$ initialize dataset

- 2: for timestep t do
- 3: $\mathbf{o_t} \leftarrow \text{record observation}$
- 4: $\mathbf{a}_{\mathbf{t}}^* \leftarrow \text{query expert for an action}$

5:
$$\epsilon_t \leftarrow \text{sample noise}$$

6:
$$\mathbf{a}_t \leftarrow \mathbf{a}_t^* + \epsilon_t$$

- 7: Apply $\mathbf{a_t}$ to environment
- 8: Store $(\mathbf{o}_t, \mathbf{a}_t^*)$ in dataset \mathcal{D} 9: end for

10:
$$\pi^{\mathrm{BC}} = \arg \min_{\pi} \mathbb{E}_{(\mathbf{o}_i, \mathbf{a}_i) \sim \mathcal{D}} \left[-\log \pi(\mathbf{a}_i | \mathbf{o}_i) \right]$$

11: return π^{BC}

1: $\mathcal{D} \leftarrow \emptyset$ initialize dataset

- 2: for timestep t do
- 3: $\mathbf{o_t} \leftarrow \text{record observation}$
- 4: $\mathbf{a}_t^* \leftarrow \text{query expert for an action}$
- 5: $\epsilon_t \leftarrow \text{sample noise}$
- 6: $\mathbf{a}_t \leftarrow \mathbf{a}_t^* + \epsilon_t$
- 7: Apply $\mathbf{a_t}$ to environment
- 8: Store $(\mathbf{o}_t, \mathbf{a}_t^*)$ in dataset \mathcal{D} 9: end for

10:
$$\pi^{BC} = \arg \min_{\pi} \mathbb{E}_{(\mathbf{o}_i, \mathbf{a}_i) \sim \mathcal{D}} \left[-\log \pi(\mathbf{a}_i | \mathbf{o}_i) \right]$$

11: return π^{BC}

1: $\mathcal{D} \leftarrow \emptyset$ initialize dataset

- 2: for timestep t do
- 3: $\mathbf{o_t} \leftarrow \text{record observation}$
- 4: $\mathbf{a}_{\mathbf{t}}^* \leftarrow$ query expert for an action
- 5: $\epsilon_t \leftarrow \text{sample noise}$
- 6: $\mathbf{a}_t \leftarrow \mathbf{a}_t^* + \epsilon_t$
- 7: Apply $\mathbf{a_t}$ to environment
- 8: Store $(\mathbf{o}_t, \mathbf{a}_t^*)$ in dataset \mathcal{D} 9: end for

10:
$$\pi^{BC} = \arg \min_{\pi} \mathbb{E}_{(\mathbf{o}_i, \mathbf{a}_i) \sim \mathcal{D}} \left[-\log \pi(\mathbf{a}_i | \mathbf{o}_i) \right]$$

11: return π^{BC}

1: $\mathcal{D} \leftarrow \emptyset$ initialize dataset

- 2: for timestep t do
- 3: $\mathbf{o_t} \leftarrow \text{record observation}$
- 4: $\mathbf{a}_{\mathbf{t}}^* \leftarrow$ query expert for an action
- 5: $\epsilon_t \leftarrow \text{sample noise}$
- 6: $\mathbf{a}_t \leftarrow \mathbf{a}_t^* + \epsilon_t$
- 7: Apply $\mathbf{a_t}$ to environment
- 8: Store $(\mathbf{o}_t, \mathbf{a}_t^*)$ in dataset \mathcal{D} 9: end for

10:
$$\pi^{\mathrm{BC}} = \arg \min_{\pi} \mathbb{E}_{(\mathbf{o}_i, \mathbf{a}_i) \sim \mathcal{D}} \left[-\log \pi(\mathbf{a}_i | \mathbf{o}_i) \right]$$

11: return π^{BC}

1: $\mathcal{D} \leftarrow \emptyset$ initialize dataset

- 2: for timestep t do
- 3: $\mathbf{o_t} \leftarrow \text{record observation}$
- 4: $\mathbf{a}_{\mathbf{t}}^* \leftarrow$ query expert for an action
- 5: $\epsilon_t \leftarrow \text{sample noise}$
- 6: $\mathbf{a}_t \leftarrow \mathbf{a}_t^* + \epsilon_t$
- 7: Apply $\mathbf{a_t}$ to environment
- 8: Store $(\mathbf{o}_t, \mathbf{a}_t^*)$ in dataset \mathcal{D} 9: end for

10:
$$\pi^{\mathrm{BC}} = \arg\min_{\pi} \mathbb{E}_{(\mathbf{o}_i, \mathbf{a}_i) \sim \mathcal{D}} \left[-\log \pi(\mathbf{a}_i | \mathbf{o}_i) \right]$$

11: return π^{BC}

Simple method to get corrective feedback

Difficult to pick effective perturbations

End to End Learning for Self-Driving Cars [Bojarski et al. 2016]

End to End Learning for Self-Driving Cars [Bojarski et al. 2016]

- Expert is too good
- Lack of corrective feedback
- Policy inaccuracies
- Errors compound over time

Analyze the number of mistakes π makes over time

Theorem 1. The number of mistakes grow $O(\epsilon T^2)$

Given dataset sampled from $\,p_{
m data}({f s},{f a})$

$$\min_{\pi} \mathbb{E}_{(\mathbf{s},\mathbf{a}) \sim p_{\text{data}}(\mathbf{s},\mathbf{a})} \left[-\log \pi(\mathbf{a}|\mathbf{s})\right]$$

Such that

$$\pi \left(\mathbf{a} \neq \pi^*(\mathbf{s}) | \mathbf{s} \right) \le \epsilon \text{ for all } \mathbf{s} \sim p_{\text{data}}(\mathbf{s})$$

i.e. the probability of π making a mistake is bounded.

Cost:
$$c(\mathbf{s}, \mathbf{a}) = \begin{cases} 0 & \text{if } \mathbf{a} = \pi^*(\mathbf{s}) \\ 1 & \text{otherwise} \end{cases}$$

р

Assume:
$$\pi (\mathbf{a} \neq \pi^*(\mathbf{s}) | \mathbf{s}) \leq \epsilon$$
 for all $\mathbf{s} \sim p_{\text{data}}(\mathbf{s})$
 $\underline{p_{\pi}^t(\mathbf{s})} = (1 - \epsilon)^t p_{\text{data}}^t(\mathbf{s}) + (1 - (1 - \epsilon)^t) p_{\text{mistake}}^t(\mathbf{s})$
robability of being in \mathbf{s} after following π for t timesteps

Assume: $\pi (\mathbf{a} \neq \pi^*(\mathbf{s}) | \mathbf{s}) \le \epsilon$ for all $\mathbf{s} \sim p_{\text{data}}(\mathbf{s})$

$$p_{\pi}^{t}(\mathbf{s}) = (1-\epsilon)^{t} p_{\text{data}}^{t}(\mathbf{s}) + (1-(1-\epsilon)^{t}) p_{\text{mistake}}^{t}(\mathbf{s})$$

no mistakes in t timsteps

Assume: $\pi (\mathbf{a} \neq \pi^*(\mathbf{s}) | \mathbf{s}) \leq \epsilon$ for all $\mathbf{s} \sim p_{\text{data}}(\mathbf{s})$ $p_{\pi}^t(\mathbf{s}) = (1 - \epsilon)^t p_{\text{data}}^t(\mathbf{s}) + (1 - (1 - \epsilon)^t) p_{\text{mistake}}^t(\mathbf{s})$

no mistakes in t timsteps

at least 1 mistakes in t timsteps

Assume:
$$\pi (\mathbf{a} \neq \pi^*(\mathbf{s}) | \mathbf{s}) \leq \epsilon$$
 for all $\mathbf{s} \sim p_{\text{data}}(\mathbf{s})$
 $p_{\pi}^t(\mathbf{s}) = (1 - \epsilon)^t p_{\text{data}}^t(\mathbf{s}) + (1 - (1 - \epsilon)^t) p_{\text{mistake}}^t(\mathbf{s})$

$$\sum_{t} \mathbb{E}_{p_{\pi}^{t}(\mathbf{s})} \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} \left[c(\mathbf{s}, \mathbf{a}) \right]$$

expected cost

Assume:
$$\pi (\mathbf{a} \neq \pi^*(\mathbf{s}) | \mathbf{s}) \leq \epsilon$$
 for all $\mathbf{s} \sim p_{\text{data}}(\mathbf{s})$
 $p_{\pi}^t(\mathbf{s}) = (1 - \epsilon)^t p_{\text{data}}^t(\mathbf{s}) + (1 - (1 - \epsilon)^t) p_{\text{mistake}}^t(\mathbf{s})$

$$\sum_{t} \mathbb{E}_{p_{\pi}^{t}(\mathbf{s})} \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} \left[c(\mathbf{s}, \mathbf{a}) \right]$$

Assume:
$$\pi (\mathbf{a} \neq \pi^*(\mathbf{s}) | \mathbf{s}) \leq \epsilon$$
 for all $\mathbf{s} \sim p_{\text{data}}(\mathbf{s})$
 $p_{\pi}^t(\mathbf{s}) = (1 - \epsilon)^t p_{\text{data}}^t(\mathbf{s}) + (1 - (1 - \epsilon)^t) p_{\text{mistake}}^t(\mathbf{s})$

$$\sum_{t} \mathbb{E}_{p_{\pi}^{t}(\mathbf{s})} \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} \left[c(\mathbf{s}, \mathbf{a}) \right]$$

Assume:
$$\pi (\mathbf{a} \neq \pi^*(\mathbf{s}) | \mathbf{s}) \leq \epsilon$$
 for all $\mathbf{s} \sim p_{\text{data}}(\mathbf{s})$
 $p_{\pi}^t(\mathbf{s}) = (1 - \epsilon)^t p_{\text{data}}^t(\mathbf{s}) + (1 - (1 - \epsilon)^t) p_{\text{mistake}}^t(\mathbf{s})$

$$\sum_{t} \mathbb{E}_{p_{\pi}^{t}(\mathbf{s})} \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} \left[c(\mathbf{s}, \mathbf{a}) \right]$$

Assume:
$$\pi (\mathbf{a} \neq \pi^*(\mathbf{s}) | \mathbf{s}) \leq \epsilon$$
 for all $\mathbf{s} \sim p_{\text{data}}(\mathbf{s})$
 $p_{\pi}^t(\mathbf{s}) = (1 - \epsilon)^t p_{\text{data}}^t(\mathbf{s}) + (1 - (1 - \epsilon)^t) p_{\text{mistake}}^t(\mathbf{s})$
 $\sum_t \mathbb{E}_{p_{\pi}^t(\mathbf{s})} \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} \frac{[c(\mathbf{s}, \mathbf{a})]}{\sqrt{c(\mathbf{s}, \mathbf{a})}} = \begin{cases} 0 & \text{if } \mathbf{a} = \pi^*(\mathbf{s}) \\ 1 & \text{otherwise} \end{cases}$

Assume:
$$\pi (\mathbf{a} \neq \pi^*(\mathbf{s}) | \mathbf{s}) \leq \epsilon$$
 for all $\mathbf{s} \sim p_{\text{data}}(\mathbf{s})$
 $p_{\pi}^t(\mathbf{s}) = (1 - \epsilon)^t p_{\text{data}}^t(\mathbf{s}) + (1 - (1 - \epsilon)^t) p_{\text{mistake}}^t(\mathbf{s})$
 $\sum_t \mathbb{E}_{p_{\pi}^t(\mathbf{s})} \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} [c(\mathbf{s}, \mathbf{a})] = \sum_t \sum_s p_{\pi}^t(\mathbf{s}) \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} [c(\mathbf{s}, \mathbf{a})]$

Assume:
$$\pi (\mathbf{a} \neq \pi^*(\mathbf{s}) | \mathbf{s}) \leq \epsilon$$
 for all $\mathbf{s} \sim p_{\text{data}}(\mathbf{s})$
 $p_{\pi}^t(\mathbf{s}) = (1 - \epsilon)^t p_{\text{data}}^t(\mathbf{s}) + (1 - (1 - \epsilon)^t) p_{\text{mistake}}^t(\mathbf{s})$
 $\sum_t \mathbb{E}_{p_{\pi}^t(\mathbf{s})} \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} [c(\mathbf{s}, \mathbf{a})] = \sum_t \sum_\mathbf{s} p_{\pi}^t(\mathbf{s}) \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} [c(\mathbf{s}, \mathbf{a})]$
 $= \sum_t \sum_\mathbf{s} \left(p_{\pi}^t(\mathbf{s}) - p_{\text{data}}^t(\mathbf{s}) + p_{\text{data}}^t(\mathbf{s}) \right) \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} [c(\mathbf{s}, \mathbf{a})]$
 $= 0$

Assume:
$$\pi (\mathbf{a} \neq \pi^*(\mathbf{s}) | \mathbf{s}) \leq \epsilon$$
 for all $\mathbf{s} \sim p_{\text{data}}(\mathbf{s})$
 $p_{\pi}^t(\mathbf{s}) = (1 - \epsilon)^t p_{\text{data}}^t(\mathbf{s}) + (1 - (1 - \epsilon)^t) p_{\text{mistake}}^t(\mathbf{s})$
 $\sum_t \mathbb{E}_{p_{\pi}^t(\mathbf{s})} \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} [c(\mathbf{s}, \mathbf{a})] = \sum_t \sum_s p_{\pi}^t(\mathbf{s}) \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} [c(\mathbf{s}, \mathbf{a})]$
 $= \sum_t \sum_s \left(p_{\pi}^t(\mathbf{s}) - p_{\text{data}}^t(\mathbf{s}) + p_{\text{data}}^t(\mathbf{s}) \right) \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} [c(\mathbf{s}, \mathbf{a})]$
 $= \sum_t \sum_s \frac{p_{\text{data}}^t(\mathbf{s}) \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} [c(\mathbf{s}, \mathbf{a})] + \sum_t \sum_s \left(p_{\pi}^t(\mathbf{s}) - p_{\text{data}}^t(\mathbf{s}) \right) \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} [c(\mathbf{s}, \mathbf{a})]$

Assume:
$$\pi (\mathbf{a} \neq \pi^*(\mathbf{s}) | \mathbf{s}) \leq \epsilon$$
 for all $\mathbf{s} \sim p_{\text{data}}(\mathbf{s})$
 $p_{\pi}^t(\mathbf{s}) = (1 - \epsilon)^t p_{\text{data}}^t(\mathbf{s}) + (1 - (1 - \epsilon)^t) p_{\text{mistake}}^t(\mathbf{s})$
 $\sum_t \mathbb{E}_{p_{\pi}^t(\mathbf{s})} \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} [c(\mathbf{s}, \mathbf{a})] = \sum_t \sum_s p_{\pi}^t(\mathbf{s}) \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} [c(\mathbf{s}, \mathbf{a})]$
 $= \sum_t \sum_s \left(p_{\pi}^t(\mathbf{s}) - p_{\text{data}}^t(\mathbf{s}) + p_{\text{data}}^t(\mathbf{s}) \right) \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} [c(\mathbf{s}, \mathbf{a})]$
 $= \sum_t \sum_s p_{\text{data}}^t(\mathbf{s}) \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} [c(\mathbf{s}, \mathbf{a})] + \sum_t \sum_s \left(p_{\pi}^t(\mathbf{s}) - p_{\text{data}}^t(\mathbf{s}) \right) \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} [c(\mathbf{s}, \mathbf{a})]$

Assume:
$$\frac{\pi (\mathbf{a} \neq \pi^*(\mathbf{s}) | \mathbf{s}) \leq \epsilon}{p_{\pi}^t(\mathbf{s}) = (1 - \epsilon)^t p_{\text{data}}^t(\mathbf{s}) + (1 - (1 - \epsilon)^t) p_{\text{mistake}}^t(\mathbf{s})$$

$$\sum_t \mathbb{E}_{p_{\pi}^t(\mathbf{s})} \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} [c(\mathbf{s}, \mathbf{a})] = \sum_t \sum_s p_{\pi}^t(\mathbf{s}) \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} [c(\mathbf{s}, \mathbf{a})]$$

$$= \sum_t \sum_s \left(p_{\pi}^t(\mathbf{s}) - p_{\text{data}}^t(\mathbf{s}) + p_{\text{data}}^t(\mathbf{s}) \right) \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} [c(\mathbf{s}, \mathbf{a})]$$

$$= \sum_t \sum_s p_{\text{data}}^t(\mathbf{s}) \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} [c(\mathbf{s}, \mathbf{a})] + \sum_t \sum_s \left(p_{\pi}^t(\mathbf{s}) - p_{\text{data}}^t(\mathbf{s}) \right) \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} [c(\mathbf{s}, \mathbf{a})]$$

Assume:
$$\frac{\pi (\mathbf{a} \neq \pi^*(\mathbf{s}) | \mathbf{s}) \leq \epsilon}{p_{\pi}^t(\mathbf{s}) = (1 - \epsilon)^t p_{\text{data}}^t(\mathbf{s}) + (1 - (1 - \epsilon)^t) p_{\text{mistake}}^t(\mathbf{s})$$

$$\sum_t \mathbb{E}_{p_{\pi}^t(\mathbf{s})} \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} [c(\mathbf{s}, \mathbf{a})] = \sum_t \sum_s p_{\pi}^t(\mathbf{s}) \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} [c(\mathbf{s}, \mathbf{a})]$$

$$= \sum_t \sum_s \left(p_{\pi}^t(\mathbf{s}) - p_{\text{data}}^t(\mathbf{s}) + p_{\text{data}}^t(\mathbf{s}) \right) \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} [c(\mathbf{s}, \mathbf{a})]$$

$$= \sum_t \sum_s p_{\text{data}}^t(\mathbf{s}) \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} [c(\mathbf{s}, \mathbf{a})] + \sum_t \sum_s \left(p_{\pi}^t(\mathbf{s}) - p_{\text{data}}^t(\mathbf{s}) \right) \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} [c(\mathbf{s}, \mathbf{a})]$$

Assume:
$$\pi (\mathbf{a} \neq \pi^*(\mathbf{s})|\mathbf{s}) \leq \epsilon$$
 for all $\mathbf{s} \sim p_{\text{data}}(\mathbf{s})$
 $p_{\pi}^t(\mathbf{s}) = (1-\epsilon)^t p_{\text{data}}^t(\mathbf{s}) + (1-(1-\epsilon)^t) p_{\text{mistake}}^t(\mathbf{s})$
 $\sum_t \mathbb{E}_{p_{\pi}^t(\mathbf{s})} \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} [c(\mathbf{s},\mathbf{a})] = \sum_t \sum_{\mathbf{s}} p_{\pi}^t(\mathbf{s}) \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} [c(\mathbf{s},\mathbf{a})]$
 $= \sum_t \sum_{\mathbf{s}} \left(p_{\pi}^t(\mathbf{s}) - p_{\text{data}}^t(\mathbf{s}) + p_{\text{data}}^t(\mathbf{s}) \right) \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} [c(\mathbf{s},\mathbf{a})]$
 $= \sum_t \sum_{\mathbf{s}} p_{\text{data}}^t(\mathbf{s}) \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} [c(\mathbf{s},\mathbf{a})] + \sum_t \sum_{\mathbf{s}} \left(p_{\pi}^t(\mathbf{s}) - p_{\text{data}}^t(\mathbf{s}) \right) \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} [c(\mathbf{s},\mathbf{a})]$

Assume:
$$\pi (\mathbf{a} \neq \pi^*(\mathbf{s}) | \mathbf{s}) \leq \epsilon$$
 for all $\mathbf{s} \sim p_{data}(\mathbf{s})$
 $p_{\pi}^t(\mathbf{s}) = (1 - \epsilon)^t p_{data}^t(\mathbf{s}) + (1 - (1 - \epsilon)^t) p_{mistake}^t(\mathbf{s})$
 $\sum_t \mathbb{E}_{p_{\pi}^t(\mathbf{s})} \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} [c(\mathbf{s}, \mathbf{a})] = \sum_t \sum_s p_{\pi}^t(\mathbf{s}) \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} [c(\mathbf{s}, \mathbf{a})]$
 $= \sum_t \sum_s \left(p_{\pi}^t(\mathbf{s}) - p_{data}^t(\mathbf{s}) + p_{data}^t(\mathbf{s}) \right) \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} [c(\mathbf{s}, \mathbf{a})]$
 $= \sum_t \sum_s p_{data}^t(\mathbf{s}) \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} [c(\mathbf{s}, \mathbf{a})] + \sum_t \sum_s \left(p_{\pi}^t(\mathbf{s}) - p_{data}^t(\mathbf{s}) \right) \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} [c(\mathbf{s}, \mathbf{a})]$
 $\leq \epsilon T + \sum_s \sum_s \left(p_{\pi}^t(\mathbf{s}) - p_{data}^t(\mathbf{s}) \right) \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} [c(\mathbf{s}, \mathbf{a})]$
 $\frac{2}{2} \sum_s p_{\pi(\mathbf{a}|\mathbf{s})} [c(\mathbf{s}, \mathbf{a})] + \sum_t \sum_s \left(p_{\pi}^t(\mathbf{s}) - p_{data}^t(\mathbf{s}) \right) \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} [c(\mathbf{s}, \mathbf{a})]$

$$\begin{split} \sum_{\mathbf{s}} p_{\pi}^{t}(\mathbf{s}) &= \sum_{\mathbf{s}} (1-\epsilon)^{t} p_{\text{data}}^{t}(\mathbf{s}) + \left(1 - (1-\epsilon)^{t}\right) p_{\text{mistake}}^{t}(\mathbf{s}) \\ \sum_{\mathbf{s}} p_{\pi}^{t}(\mathbf{s}) - (1-\epsilon)^{t} p_{\text{data}}^{t}(\mathbf{s}) &= \sum_{\mathbf{s}} \left(1 - (1-\epsilon)^{t}\right) p_{\text{mistake}}^{t}(\mathbf{s}) \end{split}$$

$$\begin{split} \sum_{\mathbf{s}} p_{\pi}^{t}(\mathbf{s}) &= \sum_{\mathbf{s}} (1-\epsilon)^{t} p_{\text{data}}^{t}(\mathbf{s}) + \left(1 - (1-\epsilon)^{t}\right) p_{\text{mistake}}^{t}(\mathbf{s}) \\ &\sum_{\mathbf{s}} p_{\pi}^{t}(\mathbf{s}) - (1-\epsilon)^{t} p_{\text{data}}^{t}(\mathbf{s}) = \sum_{\mathbf{s}} \left(1 - (1-\epsilon)^{t}\right) p_{\text{mistake}}^{t}(\mathbf{s}) \\ &\sum_{\mathbf{s}} p_{\pi}^{t}(\mathbf{s}) - (1-\epsilon)^{t} p_{\text{data}}^{t}(\mathbf{s}) - \left(1 - (1-\epsilon)^{t}\right) p_{\text{data}}^{t}(\mathbf{s}) = \sum_{\mathbf{s}} \left(1 - (1-\epsilon)^{t}\right) p_{\text{mistake}}^{t}(\mathbf{s}) - \left(1 - (1-\epsilon)^{t}\right) p_{\text{data}}^{t}(\mathbf{s}) = \sum_{\mathbf{s}} \left(1 - (1-\epsilon)^{t}\right) p_{\text{mistake}}^{t}(\mathbf{s}) - \left(1 - (1-\epsilon)^{t}\right) p_{\text{data}}^{t}(\mathbf{s}) = \sum_{\mathbf{s}} \left(1 - (1-\epsilon)^{t}\right) p_{\text{mistake}}^{t}(\mathbf{s}) - \left(1 - (1-\epsilon)^{t}\right) p_{\text{data}}^{t}(\mathbf{s}) = \sum_{\mathbf{s}} \left(1 - (1-\epsilon)^{t}\right) p_{\text{mistake}}^{t}(\mathbf{s}) - \left(1 - (1-\epsilon)^{t}\right) p_{\text{data}}^{t}(\mathbf{s}) = \sum_{\mathbf{s}} \left(1 - (1-\epsilon)^{t}\right) p_{\text{mistake}}^{t}(\mathbf{s}) - \left(1 - (1-\epsilon)^{t}\right) p_{\text{data}}^{t}(\mathbf{s}) = \sum_{\mathbf{s}} \left(1 - (1-\epsilon)^{t}\right) p_{\text{mistake}}^{t}(\mathbf{s}) - \left(1 - (1-\epsilon)^{t}\right) p_{\text{data}}^{t}(\mathbf{s}) = \sum_{\mathbf{s}} \left(1 - (1-\epsilon)^{t}\right) p_{\text{mistake}}^{t}(\mathbf{s}) - \left(1 - (1-\epsilon)^{t}\right) p_{\text{data}}^{t}(\mathbf{s}) = \sum_{\mathbf{s}} \left(1 - (1-\epsilon)^{t}\right) p_{\text{mistake}}^{t}(\mathbf{s}) - \left(1 - (1-\epsilon)^{t}\right) p_{\text{mistake}}^{t}(\mathbf{s}) = \sum_{\mathbf{s}} \left(1 - (1-\epsilon)^{t}\right) p_{\text{mistake}}^{t}(\mathbf{s}) - \left(1 - (1-\epsilon)^{t}\right) p_{\text{mistake}}^{t}(\mathbf{s}) = \sum_{\mathbf{s}} \left(1 - (1-\epsilon)^{t}\right) p_{\text{mistake}}^{t}(\mathbf{s}) + \sum_{\mathbf{s}} \left(1 - (1-\epsilon)^{t}\right)$$

$$\sum_{\mathbf{s}} p_{\pi}^{t}(\mathbf{s}) = \sum_{\mathbf{s}} (1-\epsilon)^{t} p_{\text{data}}^{t}(\mathbf{s}) + \left(1 - (1-\epsilon)^{t}\right) p_{\text{mistake}}^{t}(\mathbf{s})$$

$$\sum_{\mathbf{s}} p_{\pi}^{t}(\mathbf{s}) - (1-\epsilon)^{t} p_{\text{data}}^{t}(\mathbf{s}) = \sum_{\mathbf{s}} \left(1 - (1-\epsilon)^{t}\right) p_{\text{mistake}}^{t}(\mathbf{s})$$

$$\sum_{\mathbf{s}} p_{\pi}^{t}(\mathbf{s}) - (1-\epsilon)^{t} p_{\text{data}}^{t}(\mathbf{s}) - \left(1 - (1-\epsilon)^{t}\right) p_{\text{data}}^{t}(\mathbf{s}) = \sum_{\mathbf{s}} \left(1 - (1-\epsilon)^{t}\right) p_{\text{mistake}}^{t}(\mathbf{s})$$

$$\overline{\sum_{\mathbf{s}} p_{\pi}^{t}(\mathbf{s}) = \sum_{\mathbf{s}} (1-\epsilon)^{t} p_{\text{data}}^{t}(\mathbf{s}) + \left(1 - (1-\epsilon)^{t}\right) p_{\text{mistake}}^{t}(\mathbf{s})}$$

$$\sum_{\mathbf{s}} p_{\pi}^{t}(\mathbf{s}) - (1-\epsilon)^{t} p_{\text{data}}^{t}(\mathbf{s}) = \sum_{\mathbf{s}} \left(1 - (1-\epsilon)^{t}\right) p_{\text{mistake}}^{t}(\mathbf{s})$$

$$\sum_{\mathbf{s}} p_{\pi}^{t}(\mathbf{s}) - (1-\epsilon)^{t} p_{\text{data}}^{t}(\mathbf{s}) - \left(1 - (1-\epsilon)^{t}\right) p_{\text{data}}^{t}(\mathbf{s}) = \sum_{\mathbf{s}} \left(1 - (1-\epsilon)^{t}\right) p_{\text{mistake}}^{t}(\mathbf{s})$$

$$\sum_{\mathbf{s}} p_{\pi}^{t}(\mathbf{s}) - p_{\text{data}}^{t}(\mathbf{s})$$

$$\frac{1}{\sum_{\mathbf{s}} p_{\pi}^{t}(\mathbf{s}) = \sum_{\mathbf{s}} (1-\epsilon)^{t} p_{data}^{t}(\mathbf{s}) + (1-(1-\epsilon)^{t}) p_{mistake}^{t}(\mathbf{s})}{\sum_{\mathbf{s}} p_{\pi}^{t}(\mathbf{s}) - (1-\epsilon)^{t} p_{data}^{t}(\mathbf{s}) = \sum_{\mathbf{s}} (1-(1-\epsilon)^{t}) p_{mistake}^{t}(\mathbf{s})}{\sum_{\mathbf{s}} p_{\pi}^{t}(\mathbf{s}) - (1-\epsilon)^{t} p_{data}^{t}(\mathbf{s}) - (1-(1-\epsilon)^{t}) p_{data}^{t}(\mathbf{s}) = \sum_{\mathbf{s}} (1-(1-\epsilon)^{t}) p_{mistake}^{t}(\mathbf{s}) - (1-(1-\epsilon)^{t}) p_{data}^{t}(\mathbf{s}) = \sum_{\mathbf{s}} p_{\pi}^{t}(\mathbf{s}) - p_{data}^{t}(\mathbf{s}) = (1-(1-\epsilon)^{t}) \sum_{\mathbf{s}} p_{mistake}^{t}(\mathbf{s}) - p_{mistake}^{t}(\mathbf{s}) = (1-(1-\epsilon)^{t}) \sum_{\mathbf{s}} p_{mistake}^{t}(\mathbf{s}) - p_{mistake}^{t}(\mathbf{s}) = (1-(1-\epsilon)^{t}) \sum_{\mathbf{s}} p_{mistake}^{t}(\mathbf{s}) = (1-(1-\epsilon)^{t}) \sum_{\mathbf{s}} p_{mistake}^{t}(\mathbf{s}) = (1-(1-\epsilon)^{t}) p_{mistake}^{t}(\mathbf{s}) = (1-\epsilon)^{t} p_{mistake}^{t}$$

$$\overline{\sum_{\mathbf{s}} p_{\pi}^{t}(\mathbf{s}) = \sum_{\mathbf{s}} (1-\epsilon)^{t} p_{\text{data}}^{t}(\mathbf{s}) + (1-(1-\epsilon)^{t}) p_{\text{mistake}}^{t}(\mathbf{s})}$$

$$\sum_{\mathbf{s}} p_{\pi}^{t}(\mathbf{s}) - (1-\epsilon)^{t} p_{\text{data}}^{t}(\mathbf{s}) = \sum_{\mathbf{s}} (1-(1-\epsilon)^{t}) p_{\text{mistake}}^{t}(\mathbf{s})$$

$$\sum_{\mathbf{s}} p_{\pi}^{t}(\mathbf{s}) - (1-\epsilon)^{t} p_{\text{data}}^{t}(\mathbf{s}) - (1-(1-\epsilon)^{t}) p_{\text{data}}^{t}(\mathbf{s}) = \sum_{\mathbf{s}} (1-(1-\epsilon)^{t}) p_{\text{mistake}}^{t}(\mathbf{s}) - (1-(1-\epsilon)^{t}) p_{\text{data}}^{t}(\mathbf{s})$$

$$\sum_{\mathbf{s}} p_{\pi}^{t}(\mathbf{s}) - p_{\text{data}}^{t}(\mathbf{s}) = (1-(1-\epsilon)^{t}) \sum_{\mathbf{s}} p_{\text{mistake}}^{t}(\mathbf{s}) - p_{\text{data}}^{t}(\mathbf{s})$$

$$\leq (1-(1-\epsilon)^{t}) \sum_{\mathbf{s}} |p_{\text{mistake}}^{t}(\mathbf{s}) - p_{\text{data}}^{t}(\mathbf{s})|$$

$$\sum_{\mathbf{s}} p_{\pi}^{t}(\mathbf{s}) - p_{\text{data}}^{t}(\mathbf{s}) = \left(1 - (1 - \epsilon)^{t}\right) \sum_{\mathbf{s}} p_{\text{mistake}}^{t}(\mathbf{s}) - p_{\text{data}}^{t}(\mathbf{s})$$

$$\leq \left(1 - (1 - \epsilon)^{t}\right) \sum_{\mathbf{s}} \left| p_{\text{mistake}}^{t}(\mathbf{s}) - p_{\text{data}}^{t}(\mathbf{s}) \right|$$

$$\leq 2 \left(1 - (1 - \epsilon)^{t}\right) \qquad \text{Note: } (1 - \epsilon)^{t} \geq 1 - \epsilon t \qquad \text{for } \epsilon \in [0, 1]$$

$$\leq 2\epsilon t$$

$$\sum_{\mathbf{s}} p_{\pi}^{t}(\mathbf{s}) - p_{\text{data}}^{t}(\mathbf{s}) \leq 2 \left(1 - (1 - \epsilon)^{t} \right)$$
$$\leq 2 \left(1 - (1 - \epsilon t) \right)$$
$$\leq 2\epsilon t$$

$$\sum_{\mathbf{s}} p_{\pi}^{t}(\mathbf{s}) - p_{\text{data}}^{t}(\mathbf{s}) \leq 2\epsilon t$$

Note:
$$(1-\epsilon)^t \ge 1-\epsilon t$$
 for $\epsilon \in [0,1]$
0.5 (1-\epsilon)^t
0.5 (1-\epsilon)^t
1-\epsilon t

$$\sum_{t} \mathbb{E}_{p_{\pi}^{t}(\mathbf{s})} \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} \left[c(\mathbf{s}, \mathbf{a}) \right] = \sum_{t} \sum_{\mathbf{s}} p_{\pi}^{t}(\mathbf{s}) \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} \left[c(\mathbf{s}, \mathbf{a}) \right]$$
$$\leq \epsilon T + \sum_{t} \sum_{\mathbf{s}} \left(p_{\pi}^{t}(\mathbf{s}) - p_{\text{data}}^{t}(\mathbf{s}) \right) \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} \left[c(\mathbf{s}, \mathbf{a}) \right]$$
$$\leq 2\epsilon t \leq 1$$

$$\sum_{t} \mathbb{E}_{p_{\pi}^{t}(\mathbf{s})} \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} \left[c(\mathbf{s}, \mathbf{a}) \right] = \sum_{t} \sum_{\mathbf{s}} p_{\pi}^{t}(\mathbf{s}) \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} \left[c(\mathbf{s}, \mathbf{a}) \right]$$
$$\leq \epsilon T + \sum_{t} \sum_{\mathbf{s}} \left(p_{\pi}^{t}(\mathbf{s}) - p_{\text{data}}^{t}(\mathbf{s}) \right) \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} \left[c(\mathbf{s}, \mathbf{a}) \right]$$
$$\leq \epsilon T + \sum_{t} 2\epsilon t$$

$$\sum_{t} \mathbb{E}_{p_{\pi}^{t}(\mathbf{s})} \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} [c(\mathbf{s}, \mathbf{a})] = \sum_{t} \sum_{\mathbf{s}} p_{\pi}^{t}(\mathbf{s}) \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} [c(\mathbf{s}, \mathbf{a})]$$

$$\leq \epsilon T + \sum_{t} \sum_{\mathbf{s}} \left(p_{\pi}^{t}(\mathbf{s}) - p_{\text{data}}^{t}(\mathbf{s}) \right) \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} [c(\mathbf{s}, \mathbf{a})]$$

$$\leq \epsilon T + \sum_{t} 2\epsilon t$$

$$\leq \epsilon T + 2\epsilon T^{2} \in O(\epsilon T^{2})$$

Worst Case

 $\sum_{t} \mathbb{E}_{p_{\pi}^{t}(\mathbf{s})} \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} \left[c(\mathbf{s}, \mathbf{a}) \right] \le \epsilon T + 2\epsilon T^{2}$

Worst Case

 $\sum_{t} \mathbb{E}_{p_{\pi}^{t}(\mathbf{s})} \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} \left[c(\mathbf{s}, \mathbf{a}) \right] \le \epsilon T + 2\epsilon T^{2}$

Distribution Shift

$$\sum_{t} \mathbb{E}_{p_{\pi}^{t}(\mathbf{s})} \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} [c(\mathbf{s}, \mathbf{a})] \leq \epsilon T + \sum_{t} \sum_{\mathbf{s}} \underbrace{\left(p_{\pi}^{t}(\mathbf{s}) - p_{\text{data}}^{t}(\mathbf{s}) \right)}_{p_{\pi}^{t}(\mathbf{s})} \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} [c(\mathbf{s}, \mathbf{a})]$$

Distribution Shift

Can we make $p_{data}(\mathbf{o}) = p_{\pi}(\mathbf{o})$?

Key idea:

- Collect observations from $p_{\pi}(\mathbf{o})$ instead of $p_{\mathrm{data}}(\mathbf{o})$
- Label actions with expert
- DAgger: Dataset Aggregation [Ross et al. 2011]

DAgger

Train with
$$(\mathbf{o}_i, \mathbf{a}_i^*)$$

DAgger

- 1: for iteration i = 0, ..., k 1 do
- 2: train $\pi(\mathbf{a}|\mathbf{o})$ from dataset $\mathcal{D} = \{\mathbf{o}_0, \mathbf{a}_0, \mathbf{o}_1, \mathbf{a}_0, ...\}$
- 3: run $\pi(\mathbf{a}|\mathbf{o})$ to collect dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_0, \mathbf{o}_1, ...\}$
- 4: Label \mathcal{D}_{π} with actions \mathbf{a}_i from expert
- 5: Aggregate datasets: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$
- 6: end for

- 1: for iteration i = 0, ..., k 1 do
- 2: train $\pi(\mathbf{a}|\mathbf{o})$ from dataset $\mathcal{D} = \{\mathbf{o}_0, \mathbf{a}_0, \mathbf{o}_1, \mathbf{a}_0, ...\}$
- 3: run $\pi(\mathbf{a}|\mathbf{o})$ to collect dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_0, \mathbf{o}_1, ...\}$
- 4: Label \mathcal{D}_{π} with actions \mathbf{a}_i from expert
- 5: Aggregate datasets: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$
- 6: end for

$\label{eq:algorithm} \textbf{ALGORITHM:} \ \textbf{DAgger}$

- 1: for iteration i = 0, ..., k 1 do
- 2: train $\pi(\mathbf{a}|\mathbf{o})$ from dataset $\mathcal{D} = \{\mathbf{o}_0, \mathbf{a}_0, \mathbf{o}_1, \mathbf{a}_0, ...\}$
- 3: run $\pi(\mathbf{a}|\mathbf{o})$ to collect dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_0, \mathbf{o}_1, ...\}$
- 4: Label \mathcal{D}_{π} with actions \mathbf{a}_i from expert
- 5: Aggregate datasets: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$
- 6: end for

$\label{eq:algorithm} \textbf{ALGORITHM:} \ \textbf{DAgger}$

- 1: for iteration i = 0, ..., k 1 do
- 2: train $\pi(\mathbf{a}|\mathbf{o})$ from dataset $\mathcal{D} = \{\mathbf{o}_0, \mathbf{a}_0, \mathbf{o}_1, \mathbf{a}_0, ...\}$
- 3: run $\pi(\mathbf{a}|\mathbf{o})$ to collect dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_0, \mathbf{o}_1, ...\}$
- 4: Label \mathcal{D}_{π} with actions \mathbf{a}_i from expert

5: Aggregate datasets:
$$\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$$

6: end for

- 1: for iteration i = 0, ..., k 1 do
- 2: train $\pi(\mathbf{a}|\mathbf{o})$ from dataset $\mathcal{D} = \{\mathbf{o}_0, \mathbf{a}_0, \mathbf{o}_1, \mathbf{a}_0, ...\}$
- 3: run $\pi(\mathbf{a}|\mathbf{o})$ to collect dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_0, \mathbf{o}_1, ...\}$
- 4: Label \mathcal{D}_{π} with actions \mathbf{a}_i from expert
- 5: Aggregate datasets: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

6: end for

- 1: for iteration i = 0, ..., k 1 do
- 2: train $\pi(\mathbf{a}|\mathbf{o})$ from dataset $\mathcal{D} = \{\mathbf{o}_0, \mathbf{a}_0, \mathbf{o}_1, \mathbf{a}_0, ...\}$
- 3: run $\pi(\mathbf{a}|\mathbf{o})$ to collect dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_0, \mathbf{o}_1, ...\}$
- 4: Label \mathcal{D}_{π} with actions \mathbf{a}_i from expert
- 5: Aggregate datasets: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

6: **end for**

DAgger

DAgger

Assume:
$$\pi (\mathbf{a} \neq \pi^*(\mathbf{s}) | \mathbf{s}) \leq \epsilon$$
 for all $\mathbf{s} \sim p_{\text{data}}(\mathbf{s})$
 $p_{\pi}^t(\mathbf{s}) = (1 - \epsilon)^t p_{\text{data}}^t(\mathbf{s}) + (1 - (1 - \epsilon)^t) p_{\text{mistake}}^t(\mathbf{s})$
 $= p_{\text{data}}^t(\mathbf{s})$

$$p_{\text{data}}(\mathbf{s}) = p_{\pi}(\mathbf{s})!$$

Assume:
$$\pi (\mathbf{a} \neq \pi^*(\mathbf{s}) | \mathbf{s}) \leq \epsilon$$
 for all $\mathbf{s} \sim p_{\text{data}}(\mathbf{s})$
 $p_{\pi}^t(\mathbf{s}) = (1 - \epsilon)^t p_{\text{data}}^t(\mathbf{s}) + (1 - (1 - \epsilon)^t) p_{\text{mistake}}^t(\mathbf{s})$
 $= p_{\text{data}}^t(\mathbf{s})$

 $p_{\text{data}}(\mathbf{s}) = p_{\pi}(\mathbf{s})!$

Assume:
$$\pi (\mathbf{a} \neq \pi^*(\mathbf{s}) | \mathbf{s}) \le \epsilon$$
 for all $\mathbf{s} \sim p_{\text{data}}(\mathbf{s})$
 $p_{\pi}^t(\mathbf{s}) = p_{\text{data}}^t(\mathbf{s})$

$$p_{\text{data}}(\mathbf{s}) = p_{\pi}(\mathbf{s})!$$

$$\sum_{t} \mathbb{E}_{p_{\pi}^{t}(\mathbf{s})} \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} \left[c(\mathbf{s}, \mathbf{a}) \right] = \sum_{t} \mathbb{E}_{p_{\text{data}}^{t}(\mathbf{s})} \underbrace{\mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} \left[c(\mathbf{s}, \mathbf{a}) \right]}_{\leq \epsilon}$$

Assume:
$$\pi (\mathbf{a} \neq \pi^*(\mathbf{s}) | \mathbf{s}) \le \epsilon$$
 for all $\mathbf{s} \sim p_{\text{data}}(\mathbf{s})$
 $p_{\pi}^t(\mathbf{s}) = p_{\text{data}}^t(\mathbf{s})$

$$p_{\text{data}}(\mathbf{s}) = p_{\pi}(\mathbf{s})!$$

$$\sum_{t} \mathbb{E}_{p_{\pi}^{t}(\mathbf{s})} \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} \left[c(\mathbf{s}, \mathbf{a}) \right] = \sum_{t} \mathbb{E}_{p_{\text{data}}^{t}(\mathbf{s})} \mathbb{E}_{\pi(\mathbf{a}|\mathbf{s})} \left[c(\mathbf{s}, \mathbf{a}) \right]$$
$$\leq \sum_{t} \epsilon$$
$$\leq \epsilon T \in O(\epsilon T)$$

- 1: for iteration i = 0, ..., k 1 do
- 2: train $\pi(\mathbf{a}|\mathbf{o})$ from expert dataset $\mathcal{D} = \{\mathbf{o}_0, \mathbf{a}_0, \mathbf{o}_1, \mathbf{a}_0, ...\}$
- 3: run $\pi(\mathbf{a}|\mathbf{o})$ to collect dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_0, \mathbf{o}_1, ...\}$
- 4: Label \mathcal{D}_{π} with actions \mathbf{a}_i from expert
- 5: Aggregate datasets: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$
- 6: end for

- 1: for iteration i = 0, ..., k 1 do
- 2: train $\pi(\mathbf{a}|\mathbf{o})$ from expert dataset $\mathcal{D} = \{\mathbf{o}_0, \mathbf{a}_0, \mathbf{o}_1, \mathbf{a}_0, ...\}$
- 3: run $\pi(\mathbf{a}|\mathbf{o})$ to collect dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_0, \mathbf{o}_1, ...\}$
- 4: Label \mathcal{D}_{π} with actions \mathbf{a}_i from expert
- 5: Aggregate datasets: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

6: end for

Applications

Applications

Learning Latent Plans from Play [Lynch et al. 2019]

Applications

BC-Z: Zero-Shot Task Generalization with Robotic Imitation Learning [Jang et al. 2021]

- Behavioral Cloning
- Drift
- Theoretical Analysis
- DAgger
- Applications

Assignment 1: Behavioral Cloning

Cheetah

Assignment 1: Behavioral Cloning

C Searc	h or jump to	Pull requests Issues Codespaces Marketpl	ace Explore		수 + • 🐠	
Lassignments Public				Image: Second system Image: Second system </td		
<> Code 💿 Issues 🏦 Pull requests 🕑 Actions 🗄 Projects 🕮 Wiki 😲 Security 🗠 Insights 🐯 Settings						
	🐉 main 👻 🕻 1 branch 💿 0 tags		Go to file Add file - Code -	About 🕸		
	Jason Peng fixing potential laoding issueg		55b171e 19 hours ago 🕚 4 commits	No description, website, or topics provided.		
	🖿 a1	a1	2 days ago	ষঠ BSD-3-Clause license		
	🖿 data	a1	2 days ago	☆ 3 stars		
	envs	a1	2 days ago	valening valening valening valening		
	learning	fixing potential laoding issueg	19 hours ago			
	tools	a1	2 days ago	Releases		
	🖿 util	a1	2 days ago	No releases published Create a new release		
	🗋 .gitignore	a1	2 days ago			
		a1	2 days ago	2 days ago		
	README.md	readme	2 days ago	Packages		

github.com/xbpeng/rl_assignments