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Overview

• Behavioral Cloning

• Drift

• Theoretical Analysis

• DAgger

• Applications
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Agent-Environment Interface

Agent Environment

Action

Reward

State
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Policy
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Supervised Learning

Dataset
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Supervised Learning

Dataset

Nvidia Automotive Simulation
[NVIDIA]
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Supervised Learning

Dataset Behavioral Cloning
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Behavioral Cloning

DatasetExpert Policy

Supervised
Learning

Record
Demonstrations
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Behavioral Cloning

ALVINN: An Autonomous Land Vehicle in a Neural Network
[Pomerleau 1989]
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Does it work?
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Does it work?

Drift

No!
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Drift

• Expert is too good

• Lack of corrective feedback

• Policy inaccuracies

• Errors compound over time
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Feedback

Drift
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Noise Injection

DART: Noise Injection for Robust Imitation Learning
[Laskey et al. 2017]
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Noise Injection

DART: Noise Injection for Robust Imitation Learning
[Laskey et al. 2017]
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Noise Injection

Simple method to get corrective feedback

Can work well in practice

Dangerous for expert!

Difficult to pick effective perturbations

✓





✓
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Data Augmentation
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Data Augmentation

End to End Learning for Self-Driving Cars
[Bojarski et al. 2016]
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Data Augmentation

End to End Learning for Self-Driving Cars
[Bojarski et al. 2016]
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Data Augmentation
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Drift

• Expert is too good

• Lack of corrective feedback

• Policy inaccuracies

• Errors compound over time
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Theoretical Analysis

Analyze the number of mistakes       makes over time

Theorem 1. The number of mistakes grow 
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Theoretical Analysis

Given dataset sampled from

Such that

i.e. the probability of       making a mistake is bounded.

Cost:

for all
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Assume:                                            for all

Theoretical Analysis

probability of being in    after following     for    timesteps
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Assume:                                            for all

Theoretical Analysis

no mistakes in    timsteps
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Assume:                                            for all

Theoretical Analysis

no mistakes in    timsteps at least 1 mistakes in    timsteps
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Assume:                                               for all

Theoretical Analysis

expected cost
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Assume:                                               for all

Theoretical Analysis

?
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Theoretical Analysis

total variation distance
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Theoretical Analysis

Note:
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Note:
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Worst Case
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Distribution Shift
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Dataset Aggregation

Can we make                                  ?

Key idea: 

• Collect observations from              instead of 

• Label actions with expert

• DAgger: Dataset Aggregation [Ross et al. 2011]
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DAgger

Train with
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DAgger
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DAgger

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning
[Ross et al. 2011]
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DAgger

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning
[Ross et al. 2011]
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Applications

Learning Latent Plans from Play
[Lynch et al. 2019]
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Applications

BC-Z: Zero-Shot Task Generalization with Robotic Imitation Learning
[Jang et al. 2021]
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Summary

• Behavioral Cloning

• Drift

• Theoretical Analysis

• DAgger

• Applications
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Assignment 1: Behavioral Cloning

Cheetah Walker
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Assignment 1: Behavioral Cloning

github.com/xbpeng/rl_assignments
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