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Fig. 1. We present a system that allows physically simulated characters to learn tennis skills from motions harvested from a large collection of broadcast
tennis videos. Our simulated characters can hit the incoming ball to target positions accurately using a diverse array of strokes (serves, forehands, and
backhands), spins (topspins and slices), and playing styles (one/two-handed backhands, left/right-handed play). Overall, our system can synthesize two
physically simulated characters playing extended tennis rallies with simulated racket and ball dynamics.

We present a system that learns diverse, physically simulated tennis skills
from large-scale demonstrations of tennis play harvested from broadcast
videos. Our approach is built upon hierarchical models, combining a low-
level imitation policy and a high-level motion planning policy to steer the
character in a motion embedding learned from broadcast videos. When
deployed at scale on large video collections that encompass a vast set of
examples of real-world tennis play, our approach can learn complex ten-
nis shotmaking skills and realistically chain together multiple shots into
extended rallies, using only simple rewards and without explicit annota-
tions of stroke types. To address the low quality of motions extracted from
broadcast videos, we correct estimated motion with physics-based imita-
tion, and use a hybrid control policy that overrides erroneous aspects of
the learned motion embedding with corrections predicted by the high-level
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policy. We demonstrate that our system produces controllers for physically-
simulated tennis players that can hit the incoming ball to target positions
accurately using a diverse array of strokes (serves, forehands, and back-
hands), spins (topspins and slices), and playing styles (one/two-handed
backhands, left/right-handed play). Overall, our system can synthesize two
physically simulated characters playing extended tennis rallies with simu-
lated racket and ball dynamics. Code and data for this work is available at
https://cs.stanford.edu/~haotianz/research/vid2player3d.

CCS Concepts: • Computing methodologies→ Animation.

Additional Key Words and Phrases: physics-based character animation, imi-
tation learning, reinforcement learning

ACM Reference Format:
Haotian Zhang, Ye Yuan, Viktor Makoviychuk, Yunrong Guo, Sanja Fidler,
Xue Bin Peng, and Kayvon Fatahalian. 2023. Learning Physically Simulated
Tennis Skills from Broadcast Videos. ACM Trans. Graph. 42, 4 (August 2023),
14 pages. https://doi.org/10.1145/3592408

1 INTRODUCTION
Developing controllers for physics-based character simulation and
control is one of the core challenges of computer animation. In
recent years, techniques that combine deep reinforcement learning
(DRL) andmotion imitation have produced simulated characters that
exhibit impressive lifelike motions and perform a range of athletic
skills. The vast majority of systems use motion capture (mocap) data
as the source of kinematic motions to imitate. Unfortunately, it is
costly to acquire large amounts of high quality mocap animation. In
contrast, video of athletic events is widely available and provides a
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rich source of in-activity motion data. Long running video streams
provide examples of the full range of skills an athlete must perform
in a sport: not just salient actions (hitting a shot in tennis), but
the complex and subtle motions athletes use to transition between
these movements. Furthermore, the ability to acquire large amounts
of video allows examples of many variations of each action to be
observed (hitting a high ball or a low ball, reacting quickly or slowly).
In this paper, we ask the following questions: (1) how we can

leverage large-scale, but lower-quality, databases of 3D tennis mo-
tion harvested from broadcast videos of professional play to produce
controllers that can accomplish a challenging athletic task – play-
ing full tennis rallies with simulated racket and ball dynamics; (2)
How we can leverage state-of-the-art methods in data-driven and
physically-based character animation to help learning skills from
video data; (3) Howwe can learn character controllers with a diverse
set of skills without explicit skill annotations, such as hitting differ-
ent types of shots (serves, forehands, and backhands), employing
different spins (topspins and slices), and recovering to prepare for
the next shot.
Our approach builds upon recent ideas in hierarchical physics-

based character control: leveraging motions produced by physics-
based imitation of example videos to learn a rich motion embedding
for tennis actions, and then training a high-level motion controller
that steers the character in the latent motion space to achieve higher-
level task objectives (e.g., hitting an incoming tennis ball), with low-
level movements controlled by the imitation controller. To address
motion quality issues caused by perception errors that persist in the
learned motion embedding (e.g., blurred or occluded wrist motion,
inaccurate neck rotations), our pipeline overrides erroneous refer-
ence motion with physics-based corrections driven by high-level
task rewards or by using simple kinematic constraints specific to
tennis (e.g. players should keep their eye on the ball). Our system
utilizes residual force control [Yuan and Kitani 2020] to increase
overall task performance, but can also function without residual
forces while incurring only modest task performance reductions.

We demonstrate controllers for physically-simulated tennis play-
ers that can hit the ball to target positions on the court with high
accuracy and can successfully conduct competitive rally play that
includes a range of shot types and spins, as shown in Figure 1.
Specifically, the contributions of this work are as follows:

• Learning diverse and complex tennis skills from broad-
cast videos. We present a video imitation system built upon
hierarchical models. The system combines a low-level imita-
tion policy and a high-level motion planning policy to steer
the character in a motion embedding learned from large video
datasets, so that complex skills such as hitting tennis balls
with different types of shots and spins can be learned with
simple rewards and without explicit annotations of these
action types.

• Motion reconstruction pipeline for generating motion
embeddings with higher motion quality using physics
priors.We develop a full pipeline to reconstruct physically
plausible tennis motion from monocular broadcast videos
using physics-based imitation. Constructing the motion em-
bedding based on physically corrected motions leads to more

natural motions and better end task performance than train-
ing an embedding directly from the results of kinematic pose
estimators without physics correction.

• Hybrid approach for building motion controllers from
imperfect motion data. We propose a hybrid approach
for complementing motion reconstruction from videos with
RL-based skill learning. We overcome artifacts in hard-to-
perceive motions (e.g. blurred/occluded wrist motion) using
corrections predicted by a high-level policy aiming to accom-
plish a high-level tennis task.

2 RELATED WORK
We review previous research from the domains of monocular human
pose/motion estimation to physics-based character control. We also
discuss prior work on learning skills from videos and summarize
prior work in synthesizing character animation for sports.

Monocular human pose/motion estimation. Estimating 3D human
motion from monocular video has been a long-standing problem
in computer vision. Kinematic techniques have seen remarkable
advances with the use of Convolutional Neural Networks (CNNs)
to predict 3D joint locations from images using supervised learn-
ing [Dabral et al. 2018; Hossain and Little 2018; Mehta et al. 2018,
2017; Pavllo et al. 2019]. Statistical human body models, such as
SMPL [Loper et al. 2015], provide priors for simultaneously solv-
ing joint positions and recovering body meshes. It can be done
either through optimization to fit 2D keypoints detection [Bogo
et al. 2016; Lassner et al. 2017] or via direct regression using neural
networks [Guler and Kokkinos 2019; Kanazawa et al. 2018; Omran
et al. 2018; Pavlakos et al. 2018; Tung et al. 2017]. While most of the
algorithms work on single images, some systems have taken advan-
tage of the neighboring frames to improve temporal stability [Arnab
et al. 2019; Huang et al. 2017; Kanazawa et al. 2019; Kocabas et al.
2020; Sun et al. 2019]. Recently, HybrIK [Li et al. 2021] employs
inverse kinematics to estimate the human meshes with absolute
translations in the camera coordinates. GLAMR [Yuan et al. 2022]
addresses the global pose estimation problem via global root tra-
jectory optimization. Although kinematic pose estimation is able
to provide visually plausible results, they often produce physically
impossible motions with artifacts such as jitter, foot sliding, and
ground penetration.

A number of prior works have attempted to mitigate nonphysical
artifacts arising from kinematic pose estimators by incorporating
physical constraints and human dynamics. Many of the prior tech-
niques [Brubaker et al. 2009; Rempe et al. 2020; Shimada et al. 2020;
Vondrak et al. 2012a; Wei and Chai 2010; Zell et al. 2017] use trajec-
tory optimization to find physical forces that reproduce the given
motion depicted in a video clip. Neural PhysCap [Shimada et al.
2021] embeds hard physics constraints through a custom neural
network layer to enable fully differentiable supervised learning. In
this work, our goal is not only to estimate motions from video clips,
but also to leverage the motion data to synthesize controllers that
enable physically simulated characters to perform highly dynamic
sports activities.
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Physics-based character control. Building controllers for physics-
based character simulation and control is one of the core challenges
of computer animation. Early approaches have leveraged optimiza-
tion techniques with hand-crafted control structures, such as finite
state machines, to create controllers for a large variety of complex
behaviors [Coros et al. 2010; De Lasa et al. 2010; Hodgins et al. 1995;
Levine and Koltun 2013; Liu et al. 2012; Mordatch et al. 2012; Raib-
ert and Hodgins 1991; Tan et al. 2014; Yin et al. 2008, 2007]. More
recently, deep reinforcement learning (DRL) has been used to drasti-
cally expand the corpus of skills that can be reproduced by simulated
characters, including locomotion [Peng et al. 2017; Schulman et al.
2015; Xie et al. 2020; Yu et al. 2018], dressing [Clegg et al. 2018],
object manipulation [Merel et al. 2020], and recovery behaviors [Tao
et al. 2022]. The difficulty of designing reward functions that lead
to lifelike motions has motivated the use of motion imitation tech-
niques, where naturalistic motion can be learned by imitating ref-
erence motion data, either through explicit motion tracking [Lee
et al. 2010; Liu et al. 2016, 2010; Peng et al. 2018a] or adversarial
imitation learning [Peng et al. 2022, 2021]. Low-level motion imita-
tion controllers can be combined with high-level motion synthesis
models to form a hierarchical framework used to direct a character
to accomplish more complex tasks which may require composition
of multiple skills in furtherance of a desired task objective. Bergamin
et al. [2019] use motion-matching to generate plausible motion tra-
jectories for guiding a physically simulated character to perform a
given task, while Park et al. [2019] train an autoregressive motion
prediction model to generate plausible human motions. Won et al.
[2022] and Yao et al. [2022] train a VAE-like control model using
model-based RL with a learned differentiable world model. Once
trained, the VAE latent space can be used in a control hierarchy to
direct a character to perform new downstream tasks. Our proposed
video imitation system is also built upon the hierarchical models,
where a motion embedding is constructed using a conditional VAE.
The learned motion embedding can be used to synthesize reference
motion that achieves the given task by searching a sequence of latent
codes with DRL, similar to Motion VAE [Ling et al. 2020]. Instead
of using mocap data, our system learns physics-based character
controllers directly from broadcast videos.

Learning skills from videos. Mocap has been the most commonly
used source of motion data for physics-based character animation.
While mocap can provide high-quality motion data, these systems
typically require heavy instrumentation of both the environment
and actors, which can be difficult to apply to large-scale outdoor
sports. Video clips can provide amuchmore abundant and accessible
source of motion data. Vondrak et al. [2012b] represents one of the
first physics-based character animation systems for video imitation,
using hand-designed FSM controllers and an incremental optimiza-
tion approach with a 2D-silhouette matching objective. Peng et al.
[2018b] combine 2D/3D pose estimators and deep reinforcement
learning to train controllers to imitate a diverse corpus of skills from
short video clips. Yu et al. [2021] extend this approach to imitate
longer video sequences with dynamic camera movements and irreg-
ular environments. Yuan and Kitani [2020] propose residual force
control to compensate for the dynamics mismatch between simu-
lated characters and real humans, which enables tracking of agile

motions such as ballet dance. Most recently, SimPoE [Yuan et al.
2021] trained general motion tracking controllers using large-scale
mocap dataset (e.g, AMASS [Mahmood et al. 2019]), which enables
zero-shot imitation of skills from monocular videos in real-time. In
this work, we adopt an approach similar to SimPoE for controlling
the low-level behaviors of the simulated character and generating
physically corrected motion from low-quality estimated kinematic
motion. Unlike prior systems [Peng et al. 2018b; Yu et al. 2021] which
train individual controllers for each short video clip, our system
learns more diverse and versatile tennis skills by imitating large-
scale video datasets, which enables characters to synthesize agile
motions for more complex long-horizon tasks, such as extended
tennis rallies between two players.

Character animation for sports. Sports have long been a popular
testbed for character animation. The seminal work of Hodgins et al.
[1995] design state machine controllers to reproduce a variety of
Olympic sports, including running, bicycling, and vaulting. Zordan
and Hodgins [2002] combine physics-based simulation with motion
capture data to simulate responsive behaviors for boxing, fencing,
and table tennis. Van de Panne and Lee [2003] use Proportional
Derivitive (PD) controllers to develop an interactive simulation for
ski stunts. More recent work leveraging reinforcement learning
and trajectory optimization have demonstrated impressive results
for training controllers for more complex athletic skills, such as
basketball dribbling [Liu and Hodgins 2018], soccer dribbling and
shooting [Hong et al. 2019], figure skating [Yu et al. 2019], multi-
agent soccer [Liu et al. 2021], boxing and fencing [Won et al. 2021],
and soccer juggling [Xie et al. 2022]. It is notable that the vast major-
ity of these prior systems utilize motion capture data, which can be
scarce for highly-specialized athletic activities. In this work, we aim
to utilize widely available video data to develop versatile controllers
for sports, which also enables models to capture different styles
when using different players’ video clips.

Finally, our work is inspired by Vid2Player [Zhang et al. 2021],
which uses broadcast tennis videos to create a system to synthesize
2D player sprites that behave and appear like professional tennis
players. Our work generates physically simulated 3D character
animation which can be viewed and rendered from any viewpoint.

3 OVERVIEW
An overview of our system is shown in Figure 2. Our system takes
as input unannotated broadcast tennis videos of different players,
and outputs controllers for physically simulated characters that hit
consecutive incoming tennis balls using a diverse set of tennis skills.
The controllers can be used to produce 3D character animation
depicting two simulated characters playing tennis rallies.
Our system consists of four stages. First, we estimate 2D and

3D player poses and global root trajectories to create a kinematic
motion dataset (Section 4). Second, a low-level imitation policy is
trained to imitate the kinematic motion for controlling the low-
level behaviors of the simulated character and generate a physically
corrected motion dataset (Section 5). Next, we fit a conditional VAE
to the corrected motion dataset to learn a low-dimensional motion
embedding that produces human-like tennis motions (Section 6).
Finally, a high-level motion planning policy is trained to generate
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Fig. 2. Our video imitation system consists of four stages: First, we estimate kinematic motions from source video clips. Second, a low-level imitation policy is
trained to imitate the kinematic motion for controlling the low-level behaviors of the simulated character and generate physically corrected motion. Next, we
fit a conditional VAE to the corrected motion to learn a motion embedding that produces diverse and human-like tennis motions. Finally, a high-level motion
planning policy is trained to generate target kinematic motion by predicting VAE latent codes and joint corrections for wrist motion. The target motion is then
imitated by the low-level policy to control a physically simulated character to perform the desired task.

target kinematic motion by combining body motion output from the
motion embedding with predicted corrections for the character’s
wrist motion. The target motion is then imitated by the low-level
policy to control a physically simulated character to perform the
desired task (Section 7).

4 VIDEO ANNOTATION
We collect 13 US Open match videos (1080p) from the Tennis Chan-
nel [TennisChannel 2023]. The videos consist of matches of three
players Roger Federer, Rafael Nadal, and Novak Djokovic playing
against each other or against other players, which took place be-
tween 2017-2021. To build our tennis motion dataset from the raw
match videos, we utilize automatic machine annotations to estimate
players’ kinematic motions from the main broadcast camera view
and manual annotations for players’ identities and racket-ball con-
tact times. In total, our motion dataset contains 80 minutes of motion
data from Federer, 96 minutes from Djokovic, and 103 minutes from
Nadal. The three players are chosen because they appeared most
frequently in the selected time range. All video clips are recorded
in 30 fps. Next, we describe the details of the machine annotations
and manual annotations.

Player tracking and pose estimation. We track the players and
estimate their 2D/3D poses from the broadcast videos by using off-
the-shelf detection models. We run Yolo4 [Bochkovskiy et al. 2020]
to track players on both sides of the court to obtain point boundaries
and player bounding boxes. 2D pose keypoints are extracted using
ViTPose [Xu et al. 2022]. Finally, we use HybrIK [Li et al. 2021] to
estimate the body shape and pose parameters for SMPL [Loper et al.
2015]. Player bounding boxes are used to crop the images around
the player before being provided as input to the pose estimator.

Global root trajectory and camera estimation. Since HybrIK only
outputs root position and orientation in camera coordinates, those
quantities need to be converted to the global court coordinates,
where the origin is located at the center of the court. We first es-
timate the camera projection using the method fromFarin et al.
[2003] to detect court lines and their intersections, and then solve
for the camera matrix with the Perspective-N-Point algorithm. The
camera transformation can then be used to obtain the global root
orientation. To estimate the player’s global root position, instead
of using the translation from the camera transformation, we first
compute the 2D position of the player’s root projected onto the
ground (center of two ankle keypoints), then transform the location
into court coordinates with the inverse camera projection. We fur-
ther correct the root trajectory by solving an optimization problem
similar to GLAMR [Yuan et al. 2022] to minimize the re-projection
error between 2D keypoints and projected 3D joint positions. We
only estimate the motion of the player on the near side of the court
since this player is larger in the frame. Pose and depth estimates for
the player on the far side of the court are less reliable. The kinematic
motion dataset obtained from this stage is referred to asM𝑘𝑖𝑛 .

Manual annotations. To facilitate modeling the phase of the tennis
motion when learning the motion embedding (Section 6), we manu-
ally label the frames where a player makes ball contact. Although
we chose to manually label ball contact times for this project, it is
possible to automate this labeling process with high accuracy using
modern computer vision techniques [Hong et al. 2022]. To learn the
styles of different players, we also manually annotate the identity
of the paper in each motion sequence.

5 LOW-LEVEL IMITATION POLICY
Since the estimated kinematic motion is obtained without explicit
modeling of human dynamics, it will contain physically implausible
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motions such as jitter, foot skating, and ground penetration. To cor-
rect these artifacts, we train a low-level imitation policy to control a
physically simulated character to track this noisy kinematic motion
and output physically corrected motion. In addition to its use for
motion reconstruction, the low-level policy is also used to control
the low-level movements of the simulated character to perform
new tasks by tracking the target kinematic trajectories from the
high-level motion planning policy (Section 7).

The approach we use is similar to SimPoE [Yuan et al. 2021]. The
task of controlling the character agent in a physically simulated envi-
ronment to mimic reference motions can be formulated as a Markov
decision process (MDP), defined by a tupleM = (S,A,T , 𝑟 , 𝛾) of
states, actions, transition dynamics, a reward function, and a dis-
count factor. We first initialize the state of the simulated character
s0 to be the same initial state of the reference motion. Starting from
𝑠0, the agent iteratively samples actions a𝑡 ∈ A according to a
policy 𝜋 (a𝑡 |s𝑡 ) at each state s𝑡 ∈ S. The environment then tran-
sitions to the next state s𝑡+1 according to the transition dynamics
T (s𝑡+1 |s𝑡 , a𝑡 ), and then outputs a scalar reward 𝑟𝑡 for that transition.
The reward is computed based on how well the simulated motion
aligns with the reference motion. The goal of this learning process
is to learn an optimal policy 𝜋∗ that maximizes the expected return
𝐽 (𝜋) = E𝜋 [Σ𝑡𝛾𝑡𝑟𝑡 ]. Next, we describe the details of the state, action,
and reward function, as well as training strategy of the low-level
policy.

States. The simulated character model is created based on the
SMPL format [Loper et al. 2015], with body shape parameters esti-
mated using HybrIK [Li et al. 2021]. The character consists of 24 rigid
bodies and 72 degrees of freedom. We use the following features to
represent the character state s𝑡 = (p𝑡 , ¤p𝑡 , q𝑡 , ¤q𝑡 , p̂𝑡+1, q̂𝑡+1):

• p𝑡 : joint positions in the character’s root coordinates
• ¤p𝑡 : joint linear velocities in the character’s root coordinates
• q𝑡 : joint rotations in the joints’ local coordinates
• ¤q𝑡 : joint angular velocities in the joints’ local coordinates
• p̂𝑡+1: target (kinematic) joint positions
• q̂𝑡+1: target (kinematic) joint rotations

Actions. Similar to many prior systems, we use proportional de-
rivative (PD) controllers at each non-root joint to produce torques
for actuating the character’s body. The action a𝑡 specifies the target
joint angles u𝑡 for the PD controllers. At each simulation step, the
joint torques 𝜏𝑡 are computed as:

𝜏𝑡 = k𝑝 · (u𝑡 − q𝑛𝑟𝑡 ) − k𝑑 · ¤q𝑛𝑟𝑡 , (1)

where k𝑝 and k𝑑 denote the parameters of the PD controllers that
determine the stiffness and damping of each joint, q𝑛𝑟𝑡 and ¤q𝑛𝑟𝑡 are
the joint rotations and angular velocities of the non-root joints. To
improve tracking performance on highly agile motions, we also
allow the policy to apply external residual forces to the root [Yuan
and Kitani 2020]. Therefore, the actions also include residual forces
and torques 𝜂𝑡 for the root joint, and each action is defined as
a𝑡 = (u𝑡 , 𝜂𝑡 ).

Rewards. The reward function is designed to encourage the policy
to closely track the reference motion while also minimizing energy

expenditure. The reward consists of five terms:

𝑟𝑡 = 𝜔𝑜𝑟
𝑜
𝑡 + 𝜔𝑣𝑟

𝑣
𝑡 + 𝜔𝑝𝑟

𝑝
𝑡 + 𝜔𝑘𝑟

𝑘
𝑡 + 𝜔𝑒𝑟

𝑒
𝑡 . (2)

The joint rotation reward 𝑟𝑜𝑡 measures the difference between the
local joint rotations of the simulated character q𝑗𝑡 and the reference
motion q̂𝑗𝑡 :

𝑟𝑜𝑡 = exp

[
− 𝛼𝑜

∑︁
𝑗

(
| |q𝑗𝑡 ⊖ q̂𝑗𝑡 | |

2
)]
, (3)

where ⊖ denotes the geodesic distance between two rotations.
The velocity reward 𝑟 𝑣𝑡 measures the mismatch between local

joint velocities of the simulated motion ¤q𝑗𝑡 and the reference motion
¤̂q𝑗𝑡 :

𝑟 𝑣𝑡 = exp

[
− 𝛼𝑣

∑︁
𝑗

(
| | ¤q𝑗𝑡 − ¤̂q𝑗𝑡 | |

2
)]
. (4)

The joint position reward 𝑟𝑝𝑡 encourages the 3Dworld joint positions
x𝑗𝑡 (including the root joint) to match the reference motion x̂𝑗𝑡 :

𝑟
𝑝
𝑡 = exp

[
− 𝛼𝑝

∑︁
𝑗

(
| |x𝑗𝑡 − x̂𝑗𝑡 | |

2
)]
. (5)

The keypoint reward 𝑟𝑘𝑡 encourages the projected 2D joint positions
x̄𝑗𝑡 to match the detected 2D keypoints x̃𝑗𝑡 :

𝑟𝑘𝑡 = exp

[
− 𝛼𝑘

∑︁
𝑗

(
| |x̄𝑗𝑡 − x̃𝑗𝑡 | |

2
)]
. (6)

Finally, the reward 𝑟𝑒𝑡 denotes the power penalty computed as:

𝑟𝑒𝑡 = −
∑︁
𝑗

(
| | ¤q𝑗𝑡 · 𝜏

𝑗
𝑡 | |

2
)
, (7)

where 𝜏 𝑗𝑡 is the internal torque applied on the joint 𝑗 . The weight
and scale factor for each reward term is manually specified and kept
the same in all the experiments (see supplementary material).

Training. The training of the low-level policy is conducted in two
stages. In the first stage, we train the policy with a high-quality
mocap database AMASS [Mahmood et al. 2019] to learn to imitate
general motions. However, directly applying this policy to track the
tennis motion fromM𝑘𝑖𝑛 will lead to the character falling after a
few steps of simulation since the noisy tennis motions differ from
the motion examples in AMASS. Therefore, we find it necessary to
fine-tune the policy usingM𝑘𝑖𝑛 so that it can track the tennis motion
more closely without falling. The power penalty 𝑟𝑒𝑡 is only applied
during this fine-tuning stage to mitigate the impact of frame-to-
frame variances inM𝑘𝑖𝑛 . Once trained, we can simply run the low-
level policy to track each motion sequence fromM𝑘𝑖𝑛 and export
the physically corrected tennis motion dataset, referred asM𝑐𝑜𝑟𝑟 .
More details of the rewards, network architecture, and training
hyper-parameters can be found in the supplementary material.

Asmentioned above, the training process yields solutions that rely
on residual forces. Reducing this reliance is a challenging problem,
but stands to yield more physically accurate motion. To reduce
this reliance, we can optionally fine-tune the policy by gradually
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decreasing the allowed maximum scale of residual forces/torques
𝜂𝑡 to zero during training. We evaluate the motion quality and task
performance effects of removing residual forces in Section 9.8.

6 MOTION EMBEDDING
GivenM𝑐𝑜𝑟𝑟 , we build a kinematic motion embedding to serve as the
action space for subsequent high-level planning of long-term tennis
motions. This generative model is instantiated using conditional
VAE, which learns a low-dimensional latent space usingM𝑐𝑜𝑟𝑟 .

Our motion embedding model is based on the motion VAE(MVAE)
model [Ling et al. 2020]. Given the character’s current pose and a
latent variable 𝑧 representing possible transitions from the cur-
rent pose, MVAE reconstructs the pose in the next time step while
shaping 𝑧 into a normal distribution. At run-time, the encoder is
discarded and the decoder takes the input of the current pose and a
latent 𝑧 to produce the next pose. The predicted next pose can be
used as the input in the next step to generate a sequence of poses
autoregressively. Our system adapts the original MVAE in two ways:
(1) to prevent global drift, we condition on pose features in global
court coordinates and (2) in addition to the pose, our model also
predicts the phase of the character’s motion (tennis motion is cyclic
from shot to shot). Phase information simplifies the design of the
reward functions of the high-level policy.

Pose representation. The pose in each frame is represented using
the following features:

• q𝑟𝑡 : root orientation in the global court coordinates
• r𝑡 : root position in the global court coordinates
• ¤r𝑡 : root linear velocity in the global court coordinates
• p𝑡 : joint positions relative to the root in global court coordi-
nates

• ¤p𝑡 : linear joint velocities in the global court coordinates
• q𝑡 : joint rotations in the local joint coordinates

Representing positions/orientations in the global court coordinates
provide a strong prior to the tennis motion. For example, backhand
motions are more likely to be performed on the left side of the court
for a right-handed player and players should be facing toward the
net after each shot. In practice, we find that conditioning motion
generation on global positions/orientations yields motion that more
consistently recovers back toward the center of the court and has
the character face the net as they ready themselves for the next
shot.

Motion phase. Tennis players undergo cyclic motion from shot-
to-shot during a point. Knowing the current phase of this motion
simplifies the design of reward functions for the high-level policy
which is responsible for long-term motion planning. For example,
a reward can be designed to minimize the distance between the
racket and the ball at ball contact time. Therefore, we adapt MVAE
to also predict the motion phase for the output pose. Specifically,
we represent the motion phase at each frame with a cyclic phase
variable 𝜃 in [0, 2𝜋] based on the shot-cycle state machine from
Vid2Player [Zhang et al. 2021].𝜃 = 𝜋 denotes when the playermakes
ball contact and 𝜃 = 0 𝑜𝑟 𝜃 = 2𝜋 denotes when the player recovers
(the opponent makes ball contact). The phase for the rest of the
frames is linearly interpolated between the neighboring two anchors.

To avoid a discontinuity at 𝜃 = 2𝜋 , we encode the motion phase with
sin𝜃 and cos𝜃 . Due to the repetitive structure of tennis motion, the
motion phase can be reliably learned in a semi-supervised setting
by providing phase information for a sparse sampling of shots (we
annotated only 20% of all shots) We find that the model’s predicted
phase is always close to 𝜋 when the corresponding swing motion
nears the point where the ball should be contacted.

Training. We follow the network design and general training
setup of MVAE [Ling et al. 2020] and incorporate a number of strate-
gies that are crucial to successfully training a model on the recon-
structed tennis motions. Since the input motion data fromM𝑐𝑜𝑟𝑟 is
still noisier than mocap data, MVAE tends to be more susceptible
to error accumulation when generating longer sequences at run-
time. To improve the stability of the autoregressive predictions,
we followLing et al. [2020] and adopt scheduled sampling [Bengio
et al. 2015]. In our experiments, we find that the selection of the
coefficient 𝛽 for the KL divergence loss is critical for learning a
good motion embedding for use by the high-level policy. When 𝛽

is too large, the decoder will ignore the latent variable 𝑧 and only
playback the original motion data. When 𝛽 is too small, MVAE may
overgeneralize and produce implausible motions with clear artifacts
such as foot skate. Empirically, we find that 𝛽 = 0.5 effectively
balances the flexibility and motion quality of the learned motion
embedding. More details of the training process are provided in the
supplementary material.

7 HIGH-LEVEL MOTION PLANNING POLICY
Given a motion embedding capable of producing a diverse set of
tennis motions, we train a high-level motion planning policy that
synthesizes novel motions that enable a character to perform tasks
such as hitting an incoming tennis ball to specific target locations.
The high-level policy selects latents from the motion embedding
to generate kinematic motion trajectories that resemble human be-
haviors [Ling et al. 2020]. The resulting kinematic motions are then
used as target reference trajectories to drive a physically simulated
character using the low-level imitation policy trained in Section 5.
However, directly applying the aforementioned approach will

fail to produce characters that successfully hit the ball back into
the court with a high degree of success. The problem is that even
with physics correction, occlusions and motion blur result inM𝑐𝑜𝑟𝑟

containing notable errors in the character’s estimated wrist motion
(and corresponding racket motion). Even small errors in swing mo-
tion can prevent the high-level policy from finding motion solutions
that accurately hit the ball. To overcome inaccuracies in the recon-
structed motion data, we propose a hybrid control approach where
the full-body motion is controlled by the reference trajectories gen-
erated by the MVAE, while the wrist motion is directly controlled
by the high-level policy. We optimize the high-level policy using a
curriculum curated for tennis play.

In addition to swing motion errors, the reconstructed tennis mo-
tions feature additional errors such as the character’s eyes not track-
ing the ball and the character’s non-dominant hand not gripping
the racket during two-handed swings. Since addressing these ar-
tifacts would require additional reward engineering, we propose
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alternative solutions using simple kinematic constraints specific to
tennis.

7.1 Policy Representation
The problem of jointly optimizing the predicted MVAE latent codes
and predicted joint corrections can be formulated as an MDP and
solved with reinforcement learning. We now describe the details of
the state and action representations used for the high-level policy.

States. The state consists of a set of features that describes the
state of the character and the incoming ball, as well as control tar-
gets specified by the system. The character state shares the same
pose representation used for the MVAE from Section 6, however all
features are now computed from the simulated character instead
of the kinematic motion. The ball state is represented using the
ball’s position in the next ten frames (including the current posi-
tion), which provides the policy with a forecast of the ball’s future
trajectory. The future trajectory of the ball is estimated given the
ball’s launch velocity, spin, and height (more details can be found in
the supplementary material). Control targets consist of the desired
placement of the character’s next shot (the position where the ball
should bounce on the other side of the court) and a binary variable
indicating the desired spin direction of the next shot (topspin or
backspin).

Actions. Each action consists of two components: a latent code for
MVAE to generate a kinematic target pose for the next frame, and
joint corrections for the swing arm. The joint corrections include
three Euler angles: two for the wrist joint (excluding the twist angle
since the twist is limited for the wrist), and the twist angle for the
elbow joint. The joint corrections overwrite the rotations from the
MVAE-produced pose, and the final corrected pose is used as the
target pose for the low-level imitation policy to track.

7.2 Reward Function
We apply our framework to train control policies that enable the
simulated character to hit an incoming tennis ball so that it bounces
at desired location on the court (ball bounce position) and with a
target spin direction. This objective is represented using two reward
functions specified for stages before and after the racket-ball contact.
Before contact, we apply the racket position reward 𝑟𝑟𝑡 to minimize
the distance between the center of the racket head x𝑟𝑡 and the ball
position x𝑏𝑡 when the character hits the ball (predicted motion phase
𝜃𝑡 gets close to 𝜋 ).

𝑟𝑟𝑡 = exp(−𝛼𝑟 | |x𝑟𝑡 − x𝑏𝑡 | |2) · exp(−𝛼𝜃 | |𝜃𝑡 − 𝜋 | |2) , (8)

where 𝛼𝑟 and 𝛼𝜃 are scaling factors. After contact, we apply the ball
position reward 𝑟𝑏𝑡 to minimize the distance between the estimated
ball bounce position x̃𝑏 and the target bounce position x̂𝑏 while
ensuring the ball spins in the right direction as the target spin
direction.

𝑟𝑏𝑡 =

{
0 if 𝑠𝑏 ≠ 𝑠𝑏

exp(−𝛼𝑏 | |x̃𝑏 − x̂𝑏 | |2) if 𝑠𝑏 = 𝑠𝑏
, (9)

where 𝑠𝑏 and 𝑠𝑏 are binary variables that represent the simulated and
target ball spin direction, respectively. A value of 1 denotes topspin

(the ball spins forward) and a value of 0 denotes backspin (the ball
spins backward). Since different strokes are needed to generate
different spins to match 𝑠𝑏 , this reward causes the high-level policy
to produce the appropriate stroke type even though the strokes in
the source video are not annotated. At the moment of racket-ball
contact, we immediately estimate x̃𝑏 and apply the same 𝑟𝑏𝑡 at every
time step after contact. The two rewards are used differently at
different curriculum stages described in the next section.

7.3 Training
We design the training strategy as follows. At the beginning of each
episode, the character is initialized at a random court position near
the baseline in a ready pose. The incoming balls are launched every
2-2.5 seconds from positions near the baseline of the opponent’s
side of the court, with a launch velocity between 25-35 m/s, and
a launch spin between 0-50 RPS. The ball can bounce anywhere
between the service line and the baseline of the character’s side of
the court, which covers a wide variety of incoming ball trajectories.
To train the character to serve, we also initialize the character to a
pre-service state and initialize the ball to be thrown into the air at
the beginning of the training episode. The maximum episode length
is set to be 300 frames (10 seconds) which allows the character
to practice four consecutive shots in each episode. We found that
simulating multiple shots per episode leads to better performance
compared to only one shot per episode.

Curriculum Learning. To effectively and efficiently optimize the
high-level policy, we adopt a curriculum that gradually increases the
difficulty of the task over time. In the first stage of the curriculum,
the objective is to quickly explore the motion embedding and control
the character to move in the right direction so that the racket gets
close to the incoming ball. Therefore, we train the policy only with
the racket position reward 𝑟𝑟𝑡 , and use a larger learning rate (1𝑒−4),
higher action distribution variance Σ𝜋 (0.25), and a lower simulation
frequency (120 Hz) for faster simulation. In the second stage of the
curriculum, the goal is to control the racket so that the ball is hit over
the net to the other side of the court. The target position is simplified
as one of the three fixed positions at the left, center, and right of the
court. In this stage, the policy is trained using both rewards with a
higher weight on 𝑟𝑏𝑡 (0.9), and using a smaller learning rate (2𝑒−5),
a lower Σ𝜋 (0.04). A higher simulation frequency (360 Hz) is also
used by increasing the number of substeps in collision handling to
ensure that racket-ball contact is simulated more accurately. Finally,
the last stage of the curriculum encourages more precise control
by sampling continuous target positions spanning the entire court.
During this stage the policy is trained with an even smaller learning
rate (1𝑒−5) and Σ𝜋 (0.0025).

7.4 Additional Kinematic Constraints
In addition to the wrist motion, other aspects of routine tennis
motion may not be reconstructed accurately from video data. Most
notably, (1) the character may not consistently keep their eyes on
the ball and (2) the character’s non-dominant hand may not be
gripping the racket during a two-handed swing.

While we could attempt to correct these errors by modifying the
high-level policy to output corrections for more joints, and design
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(a) Simulated Model (b) Visualization Model 

Fig. 3. The simulated character model is created from SMPL [Loper et al.
2015], with 24 rigid body segments and 72 DOF. The tennis racket is a
combination of two solid cylinders and the grip is simplified by directly
attaching the end of the racket handle to the wrist joint.

specific rewards using domain knowledge of tennis, for simplicity
we directly correct the kinematic motion with heuristics informed
by knowledge of tennis.

Keeping eyes on the ball. In the real world, the player will rotate
their head to keep their eyes on the ball. However, head/neck rota-
tions are often poorly estimated by the kinematic pose estimator,
leading to violations of this critical attribute of play. To correct
head/neck motion, we first compute the offset angle between the
head’s facing direction and the direction from the head to the ball’s
current position and then add the offset angle back to the head/neck
joints of the kinematic pose.

Keeping both hands on the racket for two-handed backhands. Dur-
ing a two-handed backhand swing, the player will hold the racket
with both hands. However, pose estimation is typically not suffi-
ciently accurate to yield both hands tightly gripping the racket. To
improve the visual realism of the generated motion, we adjust the
kinematic pose to move the free hand close to the racket handle
by solving inverse kinematics for the joints from the wrist to the
shoulder along the arm of the free hand.
We remind the reader that as with the output of the high-level

policy, motion changes due to kinematic constraints are converted
into physically plausible motions after imitation by the low-level
policy.

8 PHYSICS MODELING OF TENNIS
In this section, we describe the modeling of the tennis racket and
tennis ball used in our physics simulation.

Tennis racket and grip. The tennis racket is modeled as two solid
cylinders with similar dimensions and masses as a real racket. The
racket head is a rigid flat cylinder with a restitution of 0.9 and
friction of 0.8 to simulate the effects of strings. We simplify the
grip by directly attaching the end of the racket’s handle to the
character’s wrist joint and model different grips by modifying the
racket orientation relative to the character’s palm (Figure 3). The
relative orientation between the palm and the racket is set on a

per-player basis according to the players’ grip style (“eastern” grip
for Federer’s forehand, “semi-western” for Djokovic and Nadal).

Tennis ball. The tennis ball is simulated as a rigid sphere with
the same radius and mass as a real tennis ball, with a restitution
of 0.9 and friction of 0.8. To simulate air friction and the effects of
spin, we add external air drag force 𝐹𝑑 and Magnus force 𝐹𝑀 into
the simulation as follows:

𝐹𝑑 = 𝐶𝑑𝐴𝑣
2/2 , 𝐹𝑀 = 𝐶𝐿𝐴𝑣

2/2 , (10)

where 𝑣 denotes the magnitude of the ball’s velocity and𝐴 = 𝜋𝜌𝑅2 is
a constant determined by the air density 𝜌 and the ball’s radius 𝑅. 𝐹𝑑
is always opposite to the direction of the ball’s velocity, and𝐶𝑑 refers
to the air drag coefficient, which is set to a constant of 0.55. In tennis,
topspin (forward ball rotation) imparts downward acceleration to
the ball leading it to drop quickly. Backspin (backward ball rotation)
produces upward acceleration causing the ball to float [Brody et al.
2004]. 𝐶𝐿 refers to the lift coefficient due to the Magnus force and
is computed as 1/(2 + 𝑣/𝑣spin) where 𝑣spin denotes the magnitude
of ball’s spin velocity (the relative speed of the surface of the ball
compared to its center point). 𝐹𝑀 is always perpendicular to the
direction of the ball’s angular velocity (following right-hand rule)
and points downwards for topspin and upwards for backspin.

9 RESULTS AND EVALUATION
We evaluate our learned controllers quantitatively in terms of their
ability to successfully perform tennis tasks and via metrics that
model the quality of the resulting motion. We also qualitatively
evaluate the ability of our learned controllers to produce tennis
motions that are humanlike and also reflect aspects of the style of
motion demonstrated in source videos. We encourage the reader
to view the supplementary video for demonstrations of the motion
generated by our system.

9.1 Experimental Setup
All physics simulations are implemented using Issac Gym [Makoviy-
chuk et al. 2021]. All policies are implemented as neural networks
using PyTorch and trained using Proximal Policy Optimization
(PPO) [Schulman et al. 2017]. Advantage estimates for policy gradi-
ent updates are computed using the generalized advantage estimator
GAE(𝜆) [Schulman et al. 2015], and gradient updates are performed
using the Adam optimizer [Kingma and Ba 2014]. In our experiments,
the low-level policy is trained with approximately one billion sam-
ples, which requires around 12 hours on a single NVIDIA RTX A100
GPU. Training the MVAE requires four hours and the high-level
policy is trained over five billion samples, which requires about two
days. Unless otherwise stated, results in this section have residual
force control enabled. Full implementation details can be found in
the supplementary material.

9.2 Metrics
To evaluate a simulated character’s task performance and motion
quality, we consider the following quantitative metrics:

Task performance metrics. The character is initialized to a posi-
tion at the center of the baseline and tasked to hit 15 consecutive
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Table 1. Task performance of controllers learned from three players’ motions
using our system. We show the 25%, 50%, and 75% quantiles using the
metrics collected from 10K test sessions (15 consecutive balls per session).
The learned controllers consistently hit a high fraction of balls back into the
court, and achieve average bounce position errors of less than two meters.

Hit rate Bounce-in rate Bounce-pos err (m)

Fed-full 0.85/0.92/1.00 0.77/0.85/0.92 1.49/1.74/1.93
Djo-full 0.92/0.92/1.00 0.73/0.81/0.85 1.16/1.37/1.68
Nad-full 0.92/0.92/1.00 0.69/0.77/0.85 1.31/1.56/1.89

random incoming tennis balls, which lasts about half a minute. The
following statistics are then collected to evaluate the model’s task
performance:

• Hit rate: the fraction of shots where the racket contacts the
incoming ball.

• Bounce-in rate: the fraction of shots where the ball is hit and
it bounces inside the court on the opposite side.

• Bounce position error (bounce-pos err): average distance be-
tween the target bounce position and a shot’s actual bounce
position when the ball lands inside the court.

Motion quality metrics. We also use the following metrics to mea-
sure the physical plausibility of the generated motions [Yi et al. 2021;
Yuan et al. 2021]:

• Jitter : average of the third derivatives of all joint positions.
• Foot sliding: average displacement of body mesh vertices that
contact the ground in two adjacent frames.

9.3 Learning Complex Tennis Skills
Using Federer’s motion data, we train a single controller to move the
simulated character to the incoming ball, perform the appropriate
swing, and hit the ball to a target location with the desired spin
(topspin or backspin). Figure 4 illustrates examples of the diversity
of shots generated by the controller, which includes serves, topspin
forehand shots, topspin backhand shots, and backhand slices. Note
how the controller learns to perform the appropriate swing motion
(Figure 4b: topspin backhand vs. 4d: slice backhand) to produce the
target spin despite the lack of stroke annotations in the source video.

Task performance. To quantitatively evaluate task performance,
we test the controller for 10K sessions (15 consecutive balls per
session) and report statistics for all three task metrics in Table 1 (see
row Fed-full). The controller is able to consistently hit incoming
tennis balls despite their diverse trajectories (median hit rate: 0.92,
median bounce-in rate: 0.85). The controller is also able to hit the
ball near the specified target location. The median and mean bounce
errors are both less than two meters.

Different player styles. One of the advantages of learning skills
from large-scale video data is that our system can learn per-player
motion embeddings from video clips of each player, and then train
different high-level policies for each embedding. We demonstrate
this by training controllers from video clips of Nadal and Djokovic
in addition to Federer. The three players have distinct playing styles:

Table 2. Ablations on the effect of physics correction (PhysicsCorr) and
hybrid control (HybridCtr). Removing either component of the system
results in decreased task performance.

Hit rate Bounce-in rate Bounce-pos err (m)

w/o PhysicsCorr 0.85/0.92/0.92 0.69/0.77/0.85 2.00/2.37/2.81
w/o HybridCtr 0.69/0.85/0.92 0.31/0.46/0.54 2.82/3.43/4.00
Fed-full 0.85/0.92/1.00 0.77/0.85/0.92 1.49/1.74/1.93

Federer and Djokovic are both right-handed, but Nadal plays left-
handed. Federer uses a one-handed backhand, while Djokovic and
Nadal use two-handed backhands. Qualitatively, as shown in Fig-
ure 4, learned skills capture the coarse attributes of a player’s style
(handedness and whether they use a one or two-handed backhand).
We report task performance for the controllers trained on Djokovic
and Nadal videos in Table 1 (Djo-full and Nad-full). Our system
learns high performing controllers in all three cases.
We note that although our per-player controllers successfully

reflect gross aspects of each player’s style, there remains much
work to be done to accurately reproduce more nuanced details
of professional-level tennis footwork and swings. For example,
racket head velocity, and correspondingly the length of swing follow
through, is shorter in the generated motions than the real-life exam-
ples. Wrist pronation, and thus racket head position during the back
swing, is not faithfully reproduced. Also, our generated motions
fail to capture how players place their non-swinging hand on the
throat of the racket during swing preparation. To more accurately
reproduce these details of professional athlete performance, higher-
fidelity motion extraction from video and improved simulation fi-
delity (more accurate models of human anatomy and ball-string
contact) are likely necessary.

Tennis rallies between two players. Although the controllers are
trained in a single-player setting (i.e., a single simulated character
without an opponent), once trained, they can be directly applied to
a two-player simulation. Specifically, we use two trained controllers
(of the same player or different players) to drive two simulated
characters to play tennis rallies against each other. We were able to
simulate a rally of 38 shots using the two controllers Fed-full and
Djo-full, lasting for 41 seconds and ending with a miss by Fed-full.

9.4 Tackling Low-Quality Demonstrations
A key challenge in this work is learning from low-quality motion
data extracted from videos. We conduct two ablation studies to show
the effectiveness of our proposed solutions.

Constructing motion embedding. Our system leverages two key
steps to process the noisy motionsM𝑘𝑖𝑛 estimated by the kinematic
pose estimator into smooth and plausible motionsM𝑣𝑎𝑒 . First, the
noisymotions inM𝑘𝑖𝑛are corrected by the low-level imitation policy
using physics simulation. Second, the corrected motionsM𝑐𝑜𝑟𝑟 are
further denoised by training MVAE to embed the motion into a
smooth motion space. Table 3 shows the motion quality of the
motions at different stages. The physics-corrected motionM𝑐𝑜𝑟𝑟 ex-
hibits less jitter and foot sliding, and the motions generated by the
MVAE (M𝑣𝑎𝑒 ) are even more smooth. As a side-effect, the smoothing
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(a) FH-topspin (right) (b) BH-onehand-topspin (right)

(c) Serve (right) (d) BH slice (right) 

(e) FH-topspin (right) (f) BH-twohand-topspin (right)

(g) FH-topspin (le�) (h) BH-twohand-topspin (le�)

Fig. 4. Our simulated characters demonstrate diverse tennis skills that reflect coarse characteristics of the per-player video data they were trained on (a)-(d)
skills learned using Roger Federer’s motion data, who is a right-handed player and uses one-handed backhand. (e)-(f) skills learned using Novak Djokovic’s
motion data, who is also a right-handed player but uses two-handed backhand. (g)-(h) skills learned using Rafael Nadal’s motion data, who is a left-handed
player and uses two-handed backhand.

Table 3. Motion quality evaluation. We compare the motion output by
our full system (Fed-full), the motion from the ablation (w/o PhysicsCorr),
and motions at different stages of our system: estimated kinematic motion
(M𝑘𝑖𝑛 ), physically corrected motion (M𝑐𝑜𝑟𝑟 ), and motion output by MVAE
(M𝑣𝑎𝑒 ). The motion generated from our full system shows higher motion
quality (less jitter and foot sliding) than w/o PhysicsCorr and the motions
at intermediate stages.

Jitter (103 m/s3) Foot sliding (cm)

M𝑘𝑖𝑛 6.08 7.41
M𝑐𝑜𝑟𝑟 3.14 1.46
M𝑣𝑎𝑒 0.96 4.70

w/o PhysicsCorr 1.19 2.82
Fed-full 0.51 1.46

by MVAE also increases foot sliding inM𝑣𝑎𝑒 , but these artifacts are
largely removed by the final step of imitating M𝑣𝑎𝑒with physics
simulation (Fed-full). To further evaluate the impact of the physics-
based correction on the learned controllers, we can train the MVAE
using the original outputs of the pose estimatorM𝑘𝑖𝑛 , and then use
the resulting MVAE to train the high-level policy (w/o PhysicsCorr).
Table 3 shows that the controller trained without physics-based
correction produces motion with more jitter and foot sliding com-
pared to Fed-full. Table 2 also shows that the task performance of
the controller trained without correction also decreases, especially

in bounce position error, which indicates the importance of using
physics-based correction to construct a good motion embedding.

Hybrid control for wrist motion. To evaluate the effectiveness of
the proposed hybrid control for the wrist motion, we can train the
high-level policy to only predict the latent code for the MVAE and
use the motion output from the MVAE without joint corrections as
the target kinematic motion (w/o HybridCtr). As shown in Table 2,
although the agent is still able to achieve a reasonable hit rate, the
bounce-in rate drops nearly by half and bounce position error in-
creases significantly. This indicates that the proposed hybrid control
is essential for achieving the challenging task of returning the ball
close to the target location.

9.5 Analysis of One Million Simulated Shots
To further understand the performance of our learned controllers,
we simulate a million shots using Fed-full and analyze the perfor-
mance metrics conditioned on certain features of the shots.

Incoming ball’s velocity and spin. We plot the hit rate conditioned
on the incoming ball’s velocity and spin when launched, shown in
Figure 5(a). Faster incoming balls are missed more often and balls
with faster spin are also more difficult to hit, which is consistent
with real-world tennis.

Incoming ball’s bounce position. In Figure 5(b) and (c), we plot
the hit rate and average bounce position error conditioned on the
incoming ball’s bounce position. We observe that balls that bounce
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(a) (b) (c) (d) (e)

Fig. 5. Analysis of 1M simulated shots. (a) 2D heat maps of hit rate conditioned on incoming velocity and amount of spin. Balls with higher velocity and spin
are harder to hit. (b)-(c) 2D heat maps of hit rate and average bounce position error conditioned on the incoming ball’s bounce position. Balls that bounce
closer to the edges of the court are harder to hit and result in higher bounce position errors. (d)-(e) Moving longer distances to reach an incoming ball (reaction
distance) results in lower hit rates and larger bounce position errors since the character must move quickly and has less time to adjust.

Table 4. Ablation of various design choices of our system. The table pro-
vides average metrics collected from 10K test sessions. All design decisions
contribute to the task performance of the controller.

Hit rate Bounce-in rate Bounce-pos err (m)

w/o Root 0.61 0.45 2.28
w/o Phase 0.17 0.00 N/A
w/o FutureObs 0.86 0.30 4.51
w/o EstBounce 0.86 0.42 3.70
w/o Curriculum 0.89 0.71 2.67

Fed-full 0.89 0.81 1.73

shorter in the middle of the court are easier shots to hit, while
balls that bounce close to the edges of the court are much more
challenging (consistent with real tennis). A similar trend is also
evident in Figure 5(c). Interestingly, incoming balls that bounce on
the right side of the court are returned with lower bounce position
error, suggesting that our right-handed simulated character has
better control with forehand shots.

Reaction distance. Reaction distance is the distance that the char-
acter must move to reach an incoming ball. As shown in Figure 5(d)
and (e), balls that require a longer reaction distance result in shots
with a lower bounce-in rate and higher bounce position error. These
balls are more difficult to reach and leave the character with less
time to adjust.

9.6 Ablation Studies
We conduct additional ablations to isolate the importance of key
design choices to the overall task performance. The results are sum-
marized in Table 4. First, we observe that both adaptions to the
original MVAE are crucial. Omitting the conditioning on global root
position (w/o Root) results in global drifts of the kinematic motion
due to error accumulation in autoregressive generation. The result
is that the simulated character fails to hit subsequent shots. Further,
without predicting the motion phase (w/o Phase), we are not able to
minimize the distance between the racket and the ball at the ball
contact time of the swing motion, i.e., the character can run into
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Fig. 6. Larger video database sizes (more motion) yield controllers with in-
creased task performance (higher hit rate and bounce-in rate) and improved
motion quality (lower jitter).

the ball at any time. The result is that the simulated character rarely
hits the ball. Second, we find that it is important to estimate the ball
trajectory in the future. In one ablation, we use historical ball posi-
tions instead of estimated future ball positions as the observation of
the high-level policy (w/o FutureObs). Using historical ball positions
results in a significant decrease in bounce-in rate, indicating the
importance of estimated ball positions in the near future for more
precise control, which is also a key skill for professional tennis play-
ers. In the other experiment, we compute the ball position reward
(Equation 9) using the ball’s current position in simulation instead
of the estimated bounce position (w/o EstBounce). The significant
decrease in the bounce-in rate and increase in bounce position error
show that computing accurate, long-term reward using estimated
bounce position is crucial for improving task performance. Finally,
not adopting the proposed curriculum learning of the high-level
policy (w/o Curriculum) also leads to inferior task performance,
indicating that the proposed curriculum simplifies the task training.

9.7 Sensitivity to Database Size
We also study the impact of input video database size on task perfor-
mance and output motion quality (Figure 6). We retrain the motion
embedding and the high-level policy using 12.5%, 25%, 50%, and
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Table 5. Removing residual force control yields more realistic motion (40%
reduction in foot sliding) but reduces the tracking ability of the low-level imi-
tation policy, resulting in reduced overall task performance. Users can select
whether or not to employ residual forces based on desired performance-
motion quality needs.

Hit rate Bounce-in rate Bounce-pos err (m) Foot sliding (cm)

w/o RF 0.78 0.69 1.85 0.87
Fed-full 0.89 0.81 1.73 1.46

75% of the motion data for Federer. Figure 6(a) shows that using in-
creasing motion data to construct the motion embedding improves
task performance, suggesting the value of acquiring large amounts
of motion data from large scale video datasets. With only 12.5% of
data (about ten minutes of motion), the hit rate and bounce-in rate
are significantly reduced because the learned motion embedding is
not dense enough for successful high-level motion planning. Addi-
tionally, with less motion data available to model the latent space,
the smoothing effect of the embedding is reduced due to decreased
signal to noise ratio in reconstructing the repetitive motion, leading
to more jitter in the decoded motion and the final simulated motion
(Figure 6(b)).

9.8 Effects of Removing Residual Force Control
As described in Section 5, our system optionally allows for the
development of controllers that use low-level imitation policies
trained without residual force control. Table 5 evaluates the effect
of removing residual force control on task performance and motion
quality. Without residual force control, foot sliding is reduced by
40% and the resulting motions are perceptibly more plausible (see
supplemental videos). However, the increased motion quality comes
at the cost of a 12% reduction in hit rate and 15% decrease in bounce-
in rate.
Our system provides users with the flexibility to choose the de-

sired scale of residual forces based on their motion quality and task
performance needs. Future work will explore ways to improve task
performance without relying on residual force control.

10 DISCUSSION AND FUTURE WORK
Our system shows that widely available, but low-quality and largely
unannotated demonstrations of human performance extracted from
videos can be a rich data source for creating data-driven human
animation controllers, provided task-specific dynamics simulation
and deep reinforcement learning are used to correct for motion
perception errors and learn high-level control policies.

We are able to produce physically simulated characters that suc-
ceed at the challenging task of playing extended tennis rallies, using
a variety of shot types, while also reflecting coarse attributes of real
human playing styles. However, as noted in Section 9.3, while the
motion of our characters reflects human tennis play, there is still
much to be done to faithfully reproduce the specific, fine-grained
motion style of the professional athletes captured in the source
videos. It will be interesting to consider how more detailed human
muscular simulation (including fatigue) or ball-string contact model-
ing might lead to more accurate physically-based swing motions. It

is also interesting to consider how access to a small number of high-
quality demonstrations (via high-resolution video capture or mocap)
could be combined with large scale, but low-quality performances
extracted from broadcast videos to produce better output.

Our focus in this project was to successfully control characters to
hit tennis balls in tennis rallies, not to learn strategies for winning
tennis points (or full matches). It will be interesting to consider what
strategies and styles of play emerge when characters are given the
opportunity to make shot placement and court positioning decisions
and trained at scale with competitive self play. Overall, we are
excited about the possibilities of combining massive-scale human
observations and simulated self-play to create human-like characters
that learn to play complex athletic games in physically simulated
environments.
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