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Fig. 1: We present TeSMo, a method for generating diverse and plausible human-scene
interactions from text input. Given a 3D scene, TeSMo generates scene-aware motions,
such as walking in free space and sitting on a chair. Our model can be easily controlled
using textual descriptions, start positions, and goal positions.

Abstract. We present TeSMo, a method for text-controlled scene-aware
motion generation based on denoising diffusion models. Previous text-
to-motion methods focus on characters in isolation without consider-
ing scenes due to the limited availability of datasets that include mo-
tion, text descriptions, and interactive scenes. Our approach begins with
pre-training a scene-agnostic text-to-motion diffusion model, emphasiz-
ing goal-reaching constraints on large-scale motion-capture datasets. We
then enhance this model with a scene-aware component, fine-tuned using
data augmented with detailed scene information, including ground plane
and object shapes. To facilitate training, we embed annotated navigation
and interaction motions within scenes. The proposed method produces
realistic and diverse human-object interactions, such as navigation and
sitting, in different scenes with various object shapes, orientations, ini-
tial body positions, and poses. Extensive experiments demonstrate that
our approach surpasses prior techniques in terms of the plausibility of
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human-scene interactions, as well as the realism and variety of the gen-
erated motions. Code will be released upon publication of this work at
https://research.nvidia.com/labs/toronto-ai/tesmo .

Keywords: Scene-Aware Human Motion Generation · Text-to-Motion

1 Introduction

Generating realistic human movements that can interact with 3D scenes is cru-
cial for many applications, ranging from gaming to embodied AI. For example,
character animators for games and films need to author motions that successfully
navigate through cluttered scenes and realistically interact with target objects,
while still maintaining artistic control over the style of the movement. One nat-
ural way to control style is through text, e.g., “skip happily to the chair and sit
down”. Recently, diffusion models have shown remarkable capabilities in gener-
ating human motion from user inputs. Text prompts [37, 48] let users control
style, while methods incorporating spatial constraints enable more fine-grained
control, such as specifying desired joint positions and trajectories [19, 34, 42].
However, these works have predominantly focused on characters in isolation,
without considering environmental context or object interactions.

In this work, we aim to incorporate scene-awareness into user-controllable
human motion generation models. However, learning to generate motions in-
volving scene interactions is challenging, even without text prompts. Unlike
large-scale motion capture datasets that depict humans in isolation [27], datasets
with paired examples of 3D human motion and scene/object geometry are lim-
ited. Prior work uses small paired datasets without text annotations to train
VAEs [10, 35, 50] or diffusion models [17, 31] that generate human scene inter-
actions with limited scope and diversity. Reinforcement learning methods are
able to learn interaction motions from limited supervision [12, 23, 53], and can
generate behaviors that are not present in the training motion dataset. However,
designing reward functions that lead to natural movements for a diverse range
of interactions is difficult and tedious.

To address these challenges, we introduce a method for Text-conditioned
Scene-aware Motion generation, called TeSMo. As shown in Fig. 1, our method
generates realistic motions that navigate around obstacles and interact with
objects, while being conditioned on a text prompt to enable stylistic diversity.
Our key idea is to combine the power of general, but scene-agnostic, text-to-
motion diffusion models with paired human-scene data that captures realistic
interactions. First, we pre-train a text-conditioned diffusion model [37] on a
diverse motion dataset with no objects (e.g., HumanML3D [8]), allowing it to
learn a realistic motion prior and the correlation with text. We then fine-tune the
model with an augmented scene-aware component that takes scene information
as input, thereby refining motion outputs to be consistent with the environment.

Given a target object with which to interact and a text prompt describing the
desired motion, we decompose the problem of generating a suitable motion in a
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scene into two components, navigation (e.g., approaching a chair while avoiding
obstacles) and interaction (e.g., sitting on the chair). Both stages leverage dif-
fusion models that are pre-trained on scene-agnostic data, then fine-tuned with
an added scene-aware branch. The navigation model generates a pelvis trajec-
tory that reaches a goal pose near the interaction object. During fine-tuning, the
scene-aware branch takes, as input, a top-down 2D floor map of the scene and
is trained on our new dataset containing locomotion sequences [27] in 3D indoor
rooms [7]. The generated pelvis trajectory is then lifted to a full-body motion
using motion in-painting [34]. Next, the interaction model generates a full-body
motion conditioned on a goal pelvis pose and a detailed 3D representation of the
target object. To further improve generalization to novel objects, the model is
fine-tuned using augmented data that re-targets interactions [10] to a variety of
object shapes while maintaining realistic human-object contacts.

Experiments demonstrate that our navigation approach outperforms prior
work in terms of goal reaching and obstacle avoidance, while producing full-
body motions on par with scene-agnostic diffusion models [19, 42]. Meanwhile,
our interaction model generates motions with fewer object penetrations than the
state-of-the-art approach [53], being preferred 71.9% of the time in a perceptual
study. The central contribution of this work includes: (1) a novel approach to
enable scene-aware and text-conditioned motion generation by fine-tuning an
augmented model on top of a pre-trained text-to-motion diffusion model, (2)
a method, TeSMo, that leverages this approach for navigation and interaction
components to generate high-quality motions in a scene from text, (3) data
augmentation strategies for placing navigation and interaction motions with text
annotations realistically in scenes to enable scene-aware fine-tuning.

2 Related Work

2.1 Scene-aware Motion Generation

Motion synthesis in computer graphics has a rich history, encompassing areas
such as locomotion [1, 20, 24, 51], human-scene/object interaction [22, 36], and
dynamic object interaction [4,25,26]. We refer readers to an extensive survey [54]
for an overview and focus on scene-aware motion generation in this section.

A particular challenge in modeling scene-aware motion is the lack of paired,
high-quality human-scene datasets. One line of work [38,39] employs a two-stage
method that first predicts the root path, followed by the full-body motion based
on the scene and predicted path. However, these methods suffer from low-quality
motion generation, attributed to the noise in the training datasets captured from
monocular RGB-D videos [11]. Neural State Machine (NSM) [35] proposes the
use of phase labeling [16] and local expert networks [6, 18, 46] to generate high-
quality object interactions, such as sitting and carrying, after training on a small
human-object mocap dataset. Nonetheless, it struggles with recognizing walkable
regions in 3D scenes, often failing to avoid obstacles. Therefore, later work in
this vein requires using the A* algorithm for collision-free path planning [10].
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These and related approaches [49, 50] are moreover limited by the diversity of
the small human-scene interaction datasets with no text annotations.

Various approaches ameliorate the data issue by creating synthetic data with
captured [43, 44] or generated [21] motions placed in scenes heuristically. HU-
MANISE [40] does this for text-conditioned scene interactions, but rely entirely
on short synthetic sequences for training, where the realism is limited by the
data generation heuristics used. The reinforcement learning (RL) approach DI-
MOS [53] learns autoregressive policies to reach goal poses in a scene without
requiring paired human-scene data for training, but still relies on A* and is
constrained by the accuracy of goal pose generation [52]. RL with physical sim-
ulators [3, 12, 29, 41] has been used to produce physically plausible movements
but faces challenges in generalizing across varied scenes and objects.

Unlike most prior works, our approach is text-conditioned and leverages a mix
of both scene-agnostic and paired human-scene data. Pre-training is done with
a diverse scene-agnostic dataset, while scene-aware fine-tuning uses motion data
with scene context. For training, we adopt both synthetic data creation with real
motions and data augmentation of real-world human-object interactions [10].

2.2 Diffusion-Based Motion Generation

Recently, diffusion models have demonstrated the ability to generate high-quality
human motions, especially when conditioned on a text prompt [30,37,48]. In ad-
dition to text, several diffusion models add spatial controllability. Some works [34,
37] adopt image inpainting techniques to incorporate dense trajectories of spatial
joint constraints into generated motions. OmniControl [42] and GMD [19] allow
control with sparse signals and a pre-defined root path, respectively.

A few diffusion works handle interactions with objects or scenes. TRACE [33]
generates 2D trajectories for pedestrians based on a rasterized street map. SceneD-
iffuser [17] conditions generation on a full scanned scene point cloud, but motion
quality is limited due to noisy training data [11]. Another approach [31] tack-
les single-object interactions through hierarchical generation of milestone poses
followed by dense motion, but it lacks text control. A concurrent line of work
enables text conditioning for single-object interactions [5,28], but they focus on
humans manipulating dynamic objects rather than interactions in full scenes.

We leverage a pre-trained text-to-motion diffusion model [37] and a fine-tuned
scene-aware branch to enable both text controllability and scene-awareness with
diffusion. We break motion generation into navigation and interaction with static
objects by conditioning on 2D floor maps and 3D geometry, respectively, and
create specialized human-scene data to enable diversity and quality.

3 Text-Conditioned Scene-Aware Motion Generation

3.1 Overview

Given a 3D scene and a target interaction object, our goal is to generate a plau-
sible human-scene interaction, where the motion style can be controlled by a
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Fig. 2: Pipeline overview: given the start position (green arrow), goal position (red
arrow), 3D scene, and text description, the navigation root trajectory is first generated
and then the full-body motion is completed through in-painting. Subsequently, the
interaction is generated from a start pose (i.e., the end pose from navigation), goal
position, and the target object, enabling the generation of object-specific motion.

user-specified text prompt. Our approach decomposes this task into two compo-
nents, navigation and interaction, as illustrated in Fig. 2. Both components are
diffusion models that leverage a fine-tuning routine to enable scene-awareness
without losing user controllability, as introduced in Sec. 3.2. To interact with an
object, the character must first navigate to a location in the scene near the ob-
ject, which is easily calculated heuristically or specified by the user, if desired. As
described in Sec. 3.3, we design a hierarchical navigation model, which generates
a root trajectory starting from an initial location that moves to the goal location
while navigating around obstacles in the scene. The generated root trajectory
is then lifted into a full-body motion using in-painting techniques [34,42]. Since
the navigation model gets close to the object in the first stage, for generating
the actual object interaction, we can focus on scenarios where the character is
already near the object. This allows a one-stage motion generation model that
directly predicts the full-body motion from the starting pose (i.e., the last pose
of navigation), a goal pelvis pose, and the object (as detailed in Section 3.4).

3.2 Background: Controllable Human Motion Diffusion Models

Motion diffusion models. Diffusion models have been successfully used to gener-
ate both top-down trajectories [33] and full-body motions [37,48]. These models
generate motions by iteratively denoising a temporal sequence of N poses (e.g.,
root positions or full-body joint positions/angles) x =

[
x1, . . . ,xN

]
. During

training, the model learns to reverse a forward diffusion process, which starts
from a clean motion x0 ∼ q (x0), sampled from the training data, and after T
diffusion steps is approximately Gaussian xT ∼ N (0, I). Then at each step t of
motion denoising, the reverse process is defined as:

pϕ(xt−1|xt, c) = N
(
xt−1;µϕ(xt, c, t), βtI

)
(1)

where c is some conditioning signal (e.g., a text prompt), and βt depends on
a pre-defined variance schedule. The denoising model µϕ with parameters ϕ
predicts the denoised motion x̂0 from a noisy input motion xt [14]. The model
is trained by sampling a motion x0 from the dataset, adding random noise, and
supervising the denoiser with a reconstruction loss ∥x0 − x̂0∥2.
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Augmented controllability. In the image domain, general pre-trained diffusion
models are specialized for new tasks using an augmented ControlNet [47] branch,
which takes in a new conditioning signal and is fine-tuned on top of the frozen
base diffusion model. OmniControl [42] adopts this idea to the human motion
domain. For motion diffusion models with a transformer encoder architecture,
they propose an augmented transformer branch that takes in kinematic joint
constraints (e.g., pelvis or other joint positions) and at each layer connects back
to the base model through a linear layer that is initialized to all zeros.

As described in Secs. 3.3 and 3.4, our key insight is to use an augmented
control branch to enable scene awareness. We first train a strong scene-agnostic
motion diffusion model to generate realistic motion from a text prompt, and
then fine-tune an augmented branch that takes scene information as input (e.g.,
a 2D floor map or 3D geometry). This new branch adapts generated motion to
be scene-compliant, while still maintaining realism and text controllability.

Test-time guidance. At test time, diffusion models can be controlled to meet
specific objectives through guidance. We directly apply guidance to the clean
motion prediction from the model x̂0 [15, 33]. At each denoising step, the pre-
dicted x̂0 is perturbed with the gradient of an analytic objective function J as
x̃0 = x̂0 − α∇xtJ (x̂0) where α controls the strength of the guidance and xt

is the noisy input motion at step t. The predicted mean µϕ is then calculated
with the updated motion prediction x̃0 as in [15,33]. As detailed later, we define
guidance objectives for avoiding collisions and reaching goals.

3.3 Navigation Motion Generation

The goal of the navigation stage is for the character to reach a goal location
near the target object using realistic locomotion behaviors that can be con-
trolled by the user via text. We design a hierarchical method that first generates
a dense root trajectory with a diffusion model, then leverages a powerful in-
painting model [34] to generate a full-body motion for the predicted trajectory.
This approach facilitates accurate goal-reaching with the root-only model, while
allowing diverse text control through the in-painting model.

Root trajectory generation. Our root trajectory diffusion model, shown in Fig. 3(a),
operates on motions where each pose is specified by xn = [x, y, z, cos θ, sin θ]n,
with (x, y, z) being the pelvis position and θ the pelvis rotation, both of which
are represented in the coordinate frame of the first pose in the sequence. The
model is conditioned on a text prompt along with starting and ending goal po-
sitions and orientations. In contrast to the representation from prior work [8],
which uses relative pelvis velocity and rotation, our representation using absolute
coordinates facilitates constraining the outputs of the model with goal poses.

Inspired by motion in-painting models [34, 37], given a start pose s and end
goal pose g, at each denoising step, we mask out the input xt such that x1

t = s
and xN

t = g, thereby providing clean goal poses directly to the model. To achieve
this, a binary mask m =

[
m1, . . . ,mN

]
with the same dimensionality as xt is

defined, where m1 and mN are a vector of 1’s and all other mn are 0’s. During
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Fig. 3: Network architecture of the (a) root trajectory model and (b) interaction mo-
tion model. Initially, the base transformer encoder is trained on scene-agnostic motion
data using start pose, target pose, and text as input. Subsequently, a scene-aware
component is fine-tuned, which incorporates the 2D floor map (a) or 3D object (b).

training, overwriting occurs with x̃t = m ∗ x0 + (1−m) ∗ xt where ∗ indicates
element-wise multiplication and x0 is a ground truth root trajectory. We then
concatenate the mask with the overwritten motion [x̃t;m] and use this as input
to the model to indicate which frames have been overwritten.

At test time, goal-reaching is improved using a guidance objective Jg =
(x̂N

0 −g)2 that measures the error between the end pelvis position and orientation
of the predicted clean trajectory x̂N

0 and the final goal pose.

Incorporating scene representation. The model as described so far is trained on a
locomotion subset of the HumanML3D dataset [8] to enable generating realistic,
text-conditioned root trajectories. However, it will be entirely unaware of the
given 3D scene. To take the scene into account and avoid degenerating the text-
following and goal-reaching performance, we augment the base diffusion model
with a control branch that takes a representation of the scene as input. This
scene-aware branch is a separate transformer encoder that is fine-tuned on top
of the frozen base model. As input, we extract the walkable regions from the 3D
geometry of the scene and project them to a bird’s-eye view, yielding a 2D floor
map M. Following [33], a Resnet-18 [13] encodes the map M as feature grid, and
at denoising step t, each 2D projected pelvis position (x, z) ∈ xn

t is queried in
the feature grid M to get the corresponding feature fnt . The resulting sequence
of features ft=

[
f1t , . . . , f

N
t

]
, along with the text prompt and noisy motion xt,

become the input to the separated transformer branch.
At test time, a collision guidance objective further encourages scene com-

pliance. This is defined as Jc = SDF(x̂0,M) where SDF calculates the 2D
transform distance map from the 2D floor map, then queries the 2D distance
value at each time step of the root trajectory. Positive distances, indicating pelvis
positions outside the walkable region, are averaged to get the final loss.

Scene-aware training and data. To train the scene-aware branch, it is impor-
tant to have a dataset featuring realistic motions navigating through scenes
with corresponding text prompts. For this purpose, we create the Loco-3D-
FRONT dataset by integrating locomotion sequences from HumanML3D into
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diverse 3D environments from 3D-FRONT [7]. Each motion is placed within a
different scene with randomized initial translation and orientation, following the
methodology outlined in [44], as depicted in Fig. 4(a). Additionally, we apply
left-right mirroring to both the motion and its interactive 3D scenes to augment
the dataset [8]. This results in a dataset of approximately 9,500 walking motions,
each motion accompanied by textual descriptions and 10 plausible 3D scenes on
average, resulting in 95k locomotion-scene training pairs.

Added control with trajectory blending. Our root trajectory diffusion model gen-
erates scene-aware motions and, unlike many prior works [10,53], does not require
a navigation mesh to compute A* [9] paths to follow. However, a user may want
a character to take the shortest path to an object by following the A* path, or to
control the general shape of the path by drawing a 2D route themselves. To en-
able this, we propose to fuse an input 2D trajectory p ∈ RN×2 with our model’s
predicted clean trajectory at every denoising step. At step t, we extract the 2D
(x, z) components p̂0 from the predicted root trajectory x̂0 and interpolate them
with the input trajectory p̃0 = s ∗ p̂0 + (1− s) ∗ p where s is the blending scale
that controls how closely the generated trajectory matches the input. We then
overwrite the 2D components of x̂0 with p̃0 and continue denoising. This blend-
ing procedure ensures outputs roughly follow the desired path but still maintain
realism inherent to the trained diffusion model.

Lifting to full-body poses. To lift the generated pelvis trajectory to a full-body
motion, we leverage the existing text-to-motion in-painting method PriorMDM [34],
which takes a dense 2D root trajectory as input. By using this strong model that
is pre-trained for text-to-motion, we can effectively generate natural and scene-
aware full-body motion, while offering diverse stylistic control through text.

3.4 Object-Driven Interaction Motion Generation

After navigation, the character has reached a location near the target object
and next should execute a desired interaction motion. Due to the fine-grained
relationship between the body and object geometry during interactions, we pro-
pose a single diffusion model to directly generate full-body motion, unlike the
two-stage navigation approach from Sec. 3.3.

Interaction motion generation. The interaction motion model operates on a
sequence of full-body poses and is shown in Fig. 3(b). Our pose representation
extends that of HumanML3D [8] to add the absolute pelvis position and heading
(x, y, z, cos θ, sin θ), similar to our navigation model. Each pose in the motion is
xn =

[
x, y, z, sin θ, cos θ, ṙa, ṙx, ṙz, ry, jp, jv, jr, cf

]
n
∈ R268 with ṙa root

angular velocity, (ṙx, ṙz) root linear velocity, ry root height, cf foot contacts,
and jp, jv, jr the local joint positions, velocities, and rotations, respectively.

The model is conditioned on a text prompt along with a starting full-body
pose (i.e., the final pose of the navigation stage) and a final goal pelvis position
and orientation. The goal pelvis pose can usually be computed heuristically, but
may also be provided by the user or predicted by another network [10]. The same
masking procedure described in Sec. 3.3 is used to pass the start and end goals
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a) Loco-3D-Front: locomotion in different rooms b) Interaction with different objects and text description

A person sits down on a chair A person stands up and walks away

Fig. 4: (a) Loco-3D-FRONT contains locomotion placed in 3D-FRONT [7] scenes
without collisions. (b) We augment SAMP [10] by randomly selecting chairs from 3D-
FRONT to match the motions and annotating a text description for each sub-sequence.

as input to the model. At test time, we also use the same goal-reaching guidance
to improve the accuracy of hitting the final pelvis pose.

Object representation. The base interaction diffusion model is first trained on a
dataset of interaction motions from HumanML3D and SAMP [10] without any
objects, which helps develop a strong prior on interaction movements driven by
text prompts. Similar to navigation, we then augment the base model with a
new object-aware transformer encoder and fine-tune this encoder separately.

For the input to this branch at each denoising step t, we leverage Basis Point
Sets (BPS) [32] to calculate two key features: object geometry and the human-
object relationship. First, a sphere with a radius of 1.0m is defined around the
object’s center, and 1024 points are randomly sampled inside this sphere to form
the BPS. The distance between each point in the BPS and the object’s surface
is then calculated, capturing the object’s geometric features and stored as BO ∈
R1024. Next, for each body pose xn

t at timestep n in the noisy input sequence, we
calculate the minimum distance from each BPS point to any body joint, giving
Bn ∈ R1024. The resulting sequence of features BH =

[
B1, . . . ,BN

]
represents

the human-object relationship throughout the entire motion. Finally, the object
and human-object interaction features are concatenated with the original pose
representation at each timestep [xn

t ; B
n; BO] and fed to an MLP to generate a

merged representation, which serves as the input to the scene-aware branch.
At test time, a collision objective is used to discourage penetrations between

human and object. This is very similar to the collision loss described in Sec. 3.3,
but the SDF volume is computed for the 3D object and body vertices that are
inside the object are penalized. Please see the supplementary material for details.

Scene-aware training and data. To train the scene-aware branch, we utilize the
SAMP dataset [10], which captures motions and objects simultaneously. Specifi-
cally, we focus on “sitting” and “stand-up” interactions extracted from 80 sitting
motion sequences in the SAMP dataset involving chairs of varying heights, as
shown in Fig. 4(b). To diversify the object geometry, we randomly select objects
from 3D-FRONT [7] to match the contact vertices on human poses in the orig-
inal SAMP motion sequences. This matching is achieved using the contact loss
and collision loss techniques outlined in MOVER [45].
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The original SAMP motions are often lengthy (∼100 sec) and lack paired
textual descriptions. For instance, a “sit” motion sequence involves walking to
an object, sitting down, standing up, and moving away. To effectively learn indi-
vidual skills, we extract sub-sequences containing specific interactions that begin
or end with a sitting pose, such as “walk then sit”, “stand up then sit”, “stand
up from sitting”, and “walk from sitting.” Furthermore, we annotate textual de-
scriptions for each sub-sequence, which often incorporate the style of sitting
poses, such as “a person walks and sits down on a chair while crossing their
arms.” Applying left-right data augmentation to motion and objects results in
approximately 200 sub-sequences for each motion sequence, each paired with
corresponding text descriptions and featuring various objects.

4 Experimental Evaluation
4.1 Implementation Details

Training. The scene-agnostic branch of our navigation model is trained on the
3D motions and text descriptions from the Loco-3D-FRONT dataset for 420k
optimization steps. Subsequently, we freeze the base model weights and fine-tune
the scene-aware branch, with additional 2D floor map inputs, for a further 20k
steps. Similarly, the scene-agnostic base of our interaction model first trains on
a mix of HumanML3D [8] and SAMP [10] data without objects for 400k steps.
Then, the object-aware branch is fine-tuned on our text-annotated SAMP data
with 3D object inputs for an additional 20k steps.
Test-time guidance. For the navigation model, we set the guidance weight α to
30 for goal-reaching guidance and 1000 for collision guidance. In the interaction
model, we utilize weights of 1000 for goal-reaching loss and 10 for the collision
SDF loss. To ensure smooth generation results, we exclude the inference guidance
at the final time step of denoising. For a fair comparison with baselines, we do
not use inference guidance unless explicitly stated in the experiment.

4.2 Evaluation Data and Metrics

Navigation. Navigation performance is assessed using the test set of Loco-3D-
FRONT, comprising roughly 1000 sequences. Our metrics evaluate the generated
root trajectory and the full-body motion after in-painting separately. For the
root trajectory, we measure goal-reaching accuracy for the 2D (horizontal xz)
root position (m), orientation (rad), and root height (m). The collision ra-
tio, the fraction of frames within generated trajectories where a collision occurs,
evaluates the consistency of root motions with the environment. For the full-
body motion after in-painting, we use common metrics from prior work [8]. FID
measures the realism of the motion, R-precision (top-3) evaluates consistency
between the text and motion, and diversity is computed based on the average
pairwise distance between sampled motions. Additionally, the foot skating ra-
tio [19] evaluates the physical plausibility of motion-ground interaction by the
proportion of frames where either foot slides a distance greater than a specified
threshold (2.5 cm) while in contact with the ground (foot height <5 cm).
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Table 1: Evaluation of navigation motion generation on the Loco-3D-FRONT test set.
(Left) For generated pelvis trajectories, our approach achieves the best goal-reaching
accuracy with low collision rate. (Right) After in-painting the full-body motion, our
method maintains diverse and realistic motion that aligns with the given text prompt,
competitive with diffusion-based scene-agnostic GMD and OmniControl.

Root trajectory evaluation Full-body motion evaluation
Goal-reaching error ↓

Method Pos. Orient. Height Collision ↓ FID ↓ R-precision ↑ Diversity ↑ Foot skating ↓

Ground Truth - - - - 0.010 0.672 7.553 0.000

GMD [19] 0.374 1.231 - - 13.160 0.114 4.488 0.181
OmniContol [42] 1.226 1.018 1.159 - 22.930 0.458 7.128 0.094
TRACE [33] 0.205 0.152 0.010 0.055 22.669 0.144 6.501 0.058

Ours (1-stage train) 0.197 0.132 0.013 0.028 22.372 0.152 6.347 0.062
Ours 0.169 0.119 0.008 0.031 20.465 0.376 6.415 0.056

Interactions. To evaluate full-body human-object interactions, we use the es-
tablished test split of the SAMP dataset [10], which contains motions related to
sitting. Same as navigation, we analyze goal-reaching accuracy through position,
orientation, and height errors. Furthermore, we assess physical plausibility by
computing average penetration values and penetration ratios between the
generated motion and interaction objects. The penetration value is the mean
SDF value across all interpenetrated body vertices of the generated motions,
while the ratio is the fraction of generated poses containing penetrations (i.e.,
SDF values < −3 cm) over all generated motion frames. We also perform a user
study to compare methods. We employ Amazon Mechanical Turk (AMT) [2] to
solicit assessments from 30 individuals. Raters are presented with two side-by-
side videos of generated interactions and asked which is more realistic. Please
see the supplementary material for more details.

4.3 Comparisons

Navigation. We conduct a comparative analysis of our method with previous
scene-aware and scene-agnostic motion generation approaches, shown in Tab. 1.
Every method is conditioned on a text prompt along with a start and end goal
pose, as described in Sec. 3.3. The TRACE baseline and our method TeSMo also
receive the 2D floor map as input.

We first compare to GMD [19] and OmniControl [42], previous scene-agnostic
text-to-motion diffusion models trained on HumanML3D to follow a diverse
range of kinematic motion constraints. GMD utilizes the horizontal pelvis posi-
tions (x, z) of both the start and end goals to generate a dense root trajectory
and subsequently the full-body motion. OmniControl takes as input the horizon-
tal pelvis positions (x, z) along with the height y to directly generate full-body
motion in a single stage. Our navigation model achieves better goal-reaching
accuracy, e.g., 16.9 cm for root position, since it is trained specifically for the
goal-reaching locomotion task. More importantly, in the right half of Tab. 1 the
full-body motion from our method after in-painting is comparable in terms of
realism, text-following, and diversity, while achieving the best foot skating re-
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Fig. 5: Navigation generation performance. The start pose is the green arrow, and the
goal pose is the red arrow. Our method more accurately reaches the goal and avoids
obstacles while style is controlled by a text prompt.

Table 2: Evaluation of human-object interaction motion generation on SAMP [10]
sitting test set. Compared to DIMOS, our approach reaches the goal pose more accu-
rately and exhibits fewer object penetrations, resulting in higher human preference.

Goal-reaching error ↓ Object penetration ↓ User study
Method Pos. Height Orient. Value Ratio preference ↑

DIMOS [53] 0.2020 0.1283 0.4731 0.0193 0.1076 29.1%
Ours 0.1445 0.0120 0.2410 0.0043 0.0611 71.9%

sults. This demonstrates that our approach adds scene-awareness to locomotion
generation, without compromising realism or text control.

To justify our two-branch model architecture, we adapt TRACE [33], a recent
root trajectory generation model designed to take a 2D map of the environment
as input. The adapted TRACE architecture is very similar to our model in
Fig. 3(a), but instead of using a separate scene-aware branch, the base trans-
former directly takes the encoded 2D floor map features as input. This results
in a single-branch architecture that must be trained from scratch, as opposed
to our two-branch fine-tuning approach. Tab. 1 reveals that our method gen-
erates more plausible root trajectories with fewer collisions and more accurate
goal-reaching. We also see that training our full two-branch architecture from
scratch (1-stage train in Tab. 1), instead of using pre-training then fine-tuning,
degrades both goal reaching and final full-body motion after in-painting.

A qualitative comparison of generated motions in different rooms is shown in
Fig. 5. GMD tends to generate simple walking-straight trajectories. OmniControl
and GMD do not reach the goal pose accurately and ignore the surroundings,
leading to collisions with the environment. Our method TeSMo is able to generate
diverse locomotion styles controlled by text in various scenes, achieving superior
goal-reaching accuracy compared to other methods.



Generating Human Interaction Motions in Scenes with Text Control 13

Table 3: Test-time guidance evaluation. Adding guidance to reach goal poses and
avoid collisions during inference improves performance. Lower is better for all metrics.

Guidance Navigation Interaction
Goal Reach Collision Goal Pos. Collision Goal Pos. Pen. Val. Pen. Ratio

✗ ✗ 0.1568 0.0294 0.1445 0.0043 0.0611
✓ ✗ 0.118 0.0342 0.1453 0.0050 0.0554
✗ ✓ 0.1550 0.0013 0.1407 0.0040 0.0414
✓ ✓ 0.1241 0.0012 0.1404 0.0045 0.0494
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Different Interact Objects

Fig. 6: Compared with DIMOS [53], our method generates more realistic human-object
interactions with reduced floating and interpenetrations.

Interaction. Tab. 2 compares our approach to DIMOS [53], a state-of-the-art
method to generate interactions trained with reinforcement learning. DIMOS
requires a full-body final goal pose as input to the policy, unlike our approach
which uses just the pelvis pose. Despite this, DIMOS struggles to reach the goal
accurately, likely due to error accumulation during autoregressive rollout. Our
method showcases fewer instances of interpenetration with interaction objects
and the user study reveals a distinct preference for motions generated by our
approach (preferred 71.9%) over those produced by DIMOS. Fig. 6 compares
the approaches qualitatively, where we see that more accurate goal-reaching re-
duces floating or penetrating the chair during sitting. Moreover, the interactions
generated by DIMOS lack diversity, and cannot be conditioned on text.

4.4 Analysis of Capabilities

In Fig. 1, our method carries out a sequence of actions, enabling traversal and
interaction with multiple objects within a scene. Fig. 7 demonstrates additional
key capabilities. In the top section, our method is controlled through a variety
of text prompts. For interactions in particular, diverse text descriptions disam-
biguate between actions like sitting or standing up, and allow stylizing the sitting
motion, e.g., with crossed arms. In the middle section, we enable user control over
trajectories by adhering to a predefined A* path. By adjusting the blend scale,
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users can adjust how closely the generated trajectory follows A*. At the bottom
of Fig. 7, we harness guidance at test time to encourage motions to reach the
goal while avoiding collisions and penetrations. As shown in Tab. 3, combining
guidance losses gives improved results both for navigation and interactions.

original blend scale 0.3 blend scale 0.6 blend scale 1.0

Ours w/ goal reaching w/ collision w/ goal reaching & collision

A*
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A person sits down and stretch out his legs A person sits down and cross his armsInput Start pose 
& object

A person is walking casually A person does a drunk walk A person jumps A person is walking a tightrope

Fig. 7: TeSMo capabilities. (Top) Diverse text control; (Middle) Following A* path
with adherence controlled by the blend scale; (Bottom) Test-time guidance encourages
locomotion to reach the goal accurately without colliding with the environment.

5 Discussion

We introduced TeSMo, a novel method for text-controlled scene-aware motion
generation. By first pre-training a scene-agnostic text-to-motion diffusion model
on large-scale motion capture data and subsequently fine-tuning with a scene-
aware component, our text-conditioned method enables generating realistic and
diverse human-object interactions within 3D scenes. To support such training,
we introduced the new Loco-3D-FRONT dataset containing realistic navigation
motions placed in 3D scenes, and extended the SAMP dataset with additional ob-
jects and text annotations. Experiments demonstrate that our generated motion
is on par with state-of-the-art diffusion models, while improving the plausibility
and realism of interactions compared to prior work.
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Limitations & Future Work. While our navigation model enables accurate goal-
reaching and text-to-motion controllability, the two-stage process can sometimes
lead to a disconnect between the generated pelvis trajectory and in-painted full-
body poses. Exploring new one-stage models, capable of simultaneously gener-
ating pelvis trajectories and poses, would streamline the process. Additionally,
our current approach, which operates on 2D floor maps, restricts the ability to
handle intricate interactions, such as a person stepping over a small stool.

Our current approach is aimed at controllability to allow users to specify
text prompts or goal objects and locations. However, our method may also fit
into recently proposed pipelines [41] that employ LLM planners to specify a
sequence of actions and contact information that could be used to guide our
motion generation. Looking ahead, we also aim to broaden the spectrum of
actions modeled by the system, to encompass activities such as lying down and
touching. Furthermore, enabling interactions with dynamic objects will allow for
more interactive and realistic scenarios.
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to-motion synthesis. Thanks Tomasz Niewiadomski, Taylor McConnell, and Tsvetelina
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A Ablation Study

Table 4: Ablation study comparing various full-body infilling methods and different
representations of navigation motion generation using the Loco-3D-FRONT test set.
(Left) For generated pelvis trajectories, our approach achieves the best goal-reaching
accuracy with low collision rate. (Right) After in-painting the full-body motion, our
method preserves diverse and realistic movements that align with the provided text
prompt, much like the model employing an alternative OminiControl full-body in-
painting technique. However, our approach distinctly outperforms the model utilizing
full-body representation.

Root trajectory evaluation Full-body motion evaluation
Goal-reaching error ↓

Method Pos. Orient. Height Collision ↓ FID ↓ R-precision ↑ Diversity ↑ Foot skating ↓

Ours (OmniControl [42] in-painting) 0.459 0.999 0.090 0.073 17.927 0.396 6.288 0.0308
Ours (full-body rep) 0.844 0.016 0.110 0.124 24.642 0.189 6.967 0.169
Ours 0.169 0.119 0.008 0.031 20.465 0.376 6.415 0.056

Alternative Full-Body In-painting Approach. While our root trajectory genera-
tion approach can integrate with several motion in-painting techniques, in the
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Fig. 8: The layout of our perceptual study for evaluating the plausibility of human-
object interaction.

main paper we use PriorMDM [34]. As an alternative, we evaluate our method
using OminiControl [42] for in-painting in Tab. 4. However, OmniControl over-
rides our generated dense pelvis trajectory and jointly generates full-body loco-
motion with a new pelvis trajectory. This severely degrades the goal-reaching
ability (from 0.169 cm to 0.459 cm) as demonstrated in Table 4. Therefore, we
choose to utilize PriorMDM as our body motion in-painting method. It aligns
well with our generated trajectory, resulting in the generation of plausible loco-
motion while maintaining adherence to the goal position.

One-stage Navigation Motion Generation. To evaluate the efficacy of our two-
stage navigation model design, we compare to a single-stage full-body motion
generation ablation of our model. This model operates on the same input data
but directly generates full-body locomotion. However, as shown in Tab. 4, this
approach limits goal-reaching ability and does not produce motion styles that
align with the input text. The local poses are somewhat dissociated from the
global pelvis trajectories, allowing for trajectory variations while maintaining
the same motion style. For instance, individuals can walk along different paths
while maintaining consistency in their motion style.

B Details on User Study for Interaction Motions

To evaluate the plausibility of human-object interaction, we perform a user study
to compare our method and DIMOS [53]. We employ Amazon Mechanical Turk
(AMT) [2] to solicit assessments from 30 individuals. Raters are presented with
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two side-by-side videos depicting generated interactions and asked to determine
which appeared more realistic, particularly focusing on the contact between the
character’s buttocks and their back with the chair or bench, and the presence
of minimal or no interpenetration between the body and the object. We present
70 test videos with the positions of our generated videos and DIMO’s results
randomly shuffled horizontally. In order to filter out poor responses, we dupli-
cated our 5 test examples where clear preferences between two video results were
evident, serving as catch trials. Ultimately, we obtained 65 useful responses out
of 70 raters. The full survey page is illustrated in Fig. 8. The user study reveals
a distinct preference for motions generated by our approach (preferred 71.9%)
over those produced by DIMOS.

C Details on Collision Guidance Used in Interaction
Motion Generation

At test time, a collision objective is used to discourage penetrations between hu-
mans and objects. Remarkably, our interaction motion generation model outputs
3D joint positions. We then link randomly sampled vertices on the SMPL mesh
surfaces with the 3D skeletons in an A-pose, allowing us to obtain the posed
sampled vertices for each new pose. This is defined as Jc = SDF(x̂0,SO) where
SDF calculates the SDF volume of the object O, then queries the sign distance
value at each time step of the body vertices. Positive distances, indicating body
vertices inside the interactive object, are averaged to get the final loss.
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