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Abstract— Simulations are attractive environments for train-
ing agents as they provide an abundant source of data and
alleviate certain safety concerns during the training process.
But the behaviours developed by agents in simulation are often
specific to the characteristics of the simulator. Due to modeling
error, strategies that are successful in simulation may not
transfer to their real world counterparts. In this paper, we
demonstrate a simple method to bridge this “reality gap”. By
randomizing the dynamics of the simulator during training, we
are able to develop policies that are capable of adapting to
very different dynamics, including ones that differ significantly
from the dynamics on which the policies were trained. This
adaptivity enables the policies to generalize to the dynamics of
the real world without any training on the physical system. Our
approach is demonstrated on an object pushing task using a
robotic arm. Despite being trained exclusively in simulation, our
policies are able to maintain a similar level of performance when
deployed on a real robot, reliably moving an object to a desired
location from random initial configurations. We explore the
impact of various design decisions and show that the resulting
policies are robust to significant calibration error.

I. INTRODUCTION

Deep reinforcement learning (DeepRL) has been shown

to be an effective framework for solving a rich reper-

toire of complex control problems. In simulated domains,

agents have been developed to perform a diverse array of

challenging tasks [1], [2], [3]. Unfortunately, many of the

capabilities demonstrated by simulated agents have often

not been realized by their physical counterparts. Many of

the modern DeepRL algorithms, which have spurred recent

breakthroughs, pose high sample complexities, therefore

often precluding their direct application to physical systems.

In addition to sample complexity, deploying RL algorithms

in the real world also raises a number of safety concerns

both for the agent and its surroundings. Since exploration

is a key component of the learning process, an agent can at

times perform actions that endanger itself or its environment.

Training agents in simulation is a promising approach that

circumvents some of these obstacles. However, transferring

policies from simulation to the real world entails challenges

in bridging the ”reality gap”, the mismatch between the

simulated and real world environments. Narrowing this gap

has been a subject of intense interest in robotics, as it offers

the potential of applying powerful algorithms that have so

far been relegated to simulated domains.

While significant efforts have been devoted to building

higher fidelity simulators, we show that dynamics random-

ization using low fidelity simulations can also be an effective

1OpenAI
2UC Berkeley, Department of Electrical Engineering and Computer

Science

Fig. 1. A recurrent neural network policy trained for a pushing task in
simulation is deployed directly on a Fetch Robotics arm. The red marker
indicates the target location for the puck.

approach to develop policies that can be transferred directly

to the real world. The effectiveness of our approach is

demonstrated on an object pushing task, where a policy

trained exclusively in simulation is able to successfully

perform the task with a real robot without additional training

on the physical system.

II. RELATED WORK

Recent years have seen the application of deep reinforce-

ment learning to a growing repertoire of control problems.

The framework has enabled simulated agents to develop

highly dynamic motor skills [4], [5], [6], [7]. But due to

the high sample complexity of RL algorithms and other

physical limitations, many of the capabilities demonstrated

in simulation have yet to be replicated in the physical world.

Guided Policy Search (GPS) [8] represents one of the few

algorithms capable of training policies directly on a real

robot. By leveraging trajectory optimization with learned lin-

ear dynamics models, the method is able to develop complex

manipulation skills with relatively few interactions with the

environment. The method has also been extended to learning

vision-based manipulation policies [9]. Researchers have also

explored parallelizing training across multiple robots [10].

Nonetheless, successful examples of training policies directly

on physical robots have so far been demonstrated only on

relatively restrictive domains.

A. Domain Adaptation

The problem of transferring control policies from sim-

ulation to the real world can be viewed as an instance

of domain adaptation, where a model trained in a source

domain is transfered to a new target domain. One of the

key assumptions behind these methods is that the different

domains share common characteristics such that representa-

tions and behaviours learned in one will prove useful for the

other. Learning invariant features has emerged as a promising

approach of taking advantage of these commonalities [11],

[12]. Tzeng et al. [11] and Gupta et al. [13] explored using

pairwise constraints to encourage networks to learn similar

embeddings for samples from different domains that are
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labeled as being similar. Daftry et al. [14] applied a similar

approach to transfer policies for controlling aerial vehicles

to different environments and vehicle models. In the context

of RL, adversarial losses have been used to transfer policies

between different simulated domains, by encouraging agents

to adopt similar behaviours across the various environments

[15]. Alternatively, progressive networks have also been used

to transfer policies for a robotic arm from simulation to the

real world [16]. By reusing features learned in simulation,

their method was able to significantly reduce the amount

of data needed from the physical system. Christiano et al.

[17] transfered policies from simulation to a real robot by

training an inverse-dynamics model from real world data.

While promising, these methods nonetheless still require data

from the target domain during training.

B. Domain Randomization

Domain randomization is a complementary class of tech-

niques for adaptation that is particularly well suited for sim-

ulation. With domain randomization, discrepancies between

the source and target domains are modeled as variability

in the source domain. Randomization in the visual domain

has been used to directly transfer vision-based policies from

simulation to the real world without requiring real images

during training [18], [19]. Sadeghi and Levine [18] trained

vision-based controllers for a quadrotor using only synthet-

ically rendered scenes, and Tobin et al. [19] demonstrated

transferring image-based object detectors. Unlike previous

methods, which sought to bridge the reality gap with high

fidelity rendering [20], their systems used only low fidelity

rendering and modeled differences in visual appearance by

randomizing scene properties such as lighting, textures, and

camera placement. In addition to randomizing the visual

features of a simulation, randomized dynamics have also

been used to develop controllers that are robust to uncertainty

in the dynamics of the system. Mordatch et al. [21] used a

trajectory optimizer to plan across an ensemble of dynamics

models, to produce robust trajectories that are then executed

on a real robot. Their method allowed a Darwin robot to

perform a variety of locomotion skills. But due to the cost

of the trajectory optimization step, the planning is performed

offline. Other methods have also been proposed to develop

robust policies through adversarial training schemes [22],

[23]. Yu et al. [24] trained a system identification module

to explicitly predict parameters of interest, such as mass and

friction. The predicted parameters are then provided as input

to a policy to compute the appropriate controls. While the

results are encouraging, these methods have so far only been

demonstrated on transfer between different simulators.

The work most reminiscent to our proposed method is

that of Antonova et al. [25], where randomized dynamics

was used to transfer manipulation policies from simulation

to the real world. By randomizing physical parameters such

as friction and latency, they were able to train policies in

simulation for pivoting objects held by a gripper, and later

transfer the policies directly to a Baxter robot without requir-

ing additional fine-tuning on the physical system. However

their policies were modeled using memoryless feedforward

networks, and while the policies developed robust strategies,

the lack of internal state limits the feedforward policies’

ability to adapt to mismatch between the simulated and real

environment. We show that memory-based policies are able

to cope with greater variability during training and also better

generalize to the dynamics of the real world. Unlike previous

methods which often require meticulous calibration of the

simulation to closely conform to the physical system, our

policies are able to adapt to significant calibration error.

C. Non-prehensile Manipulation

Pushing, a form of non-prehensile manipulation, is an

effective strategy for positioning and orienting objects that

are too large or heavy to be grasped [26]. Though pushing has

attracted much interest from the robotics community [27],

[28], [29], it remains a challenging skill for robots to adopt.

Part of the difficulty stems from accurately modeling the

complex contact dynamics between surfaces. Characteristics

such as friction can vary significantly across the surface of an

object, and the resulting motions can be highly sensitive to

the initial configuration of the contact surfaces [26]. Models

have been proposed to facilitate planning algorithms [27],

[30], [28], but they tend to rely on simplifying assumptions

that are often violated in practice. More recently, deep learn-

ing methods have been applied to train predictive models for

pushing [31]. While data-driven methods overcome some of

the modeling challenges faced by previous frameworks, they

require a large corpus of real world data during training.

Such a dataset can be costly to collect, and may become

prohibitive for more complex tasks. Clavera et al. demon-

strated transferring pushing policies trained in simulation to

a real PR2 [32]. Their approach took advantage of shaped

reward functions and careful calibration to ensure that the

behaviour of the simulation conforms to that of the physical

system. In contrast, we will show that adaptive policies can

be trained exclusively in simulation and using only sparse

rewards. The resulting policies are able accommodate large

calibration errors when deployed on a real robot and also

generalize to variability in the dynamics of the physical

system.

III. BACKGROUND

In this section we will provide a review of the RL

framework and notation used in the following sections. We

consider a standard RL problem where an agent interacts

with an environment according to a policy in order to

maximize a reward. The state of the environment at timestep

t is denoted by st ∈ S. For simplicity, we assume that

the state is fully observable. A policy π(a|s) defines a

distribution over the action space A given a particular state s,

where each query to the policy samples an action a from the

conditional distribution. The reward function r : S × A →
R provides a scalar signal that reflects the desirability of

performing an action at a given state. For convenience, we

denote rt = r(st, at). The goal of the agent is to maximize
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the multi-step return Rt =
∑T

t′=t γ
t′−trt′ , where γ ∈ [0, 1]

is a discount factor and T is the horizon of each episode.

The objective during learning is to find an optimal policy

π∗ that maximize the expected return of the agent J(π)

π∗ = arg max
π

J(π)

If each episode starts in a fixed initial state, expected return

can be rewritten as the expected return starting at the first

step

J(π) = E[R0|π] = Eτ∼p(τ |π)

[
T−1∑
t=0

r(st, at)

]

where p(τ |π) represents the likelihood of a trajectory

τ = (s0, a0, s1, ..., aT−1, sT ) under the policy π,

p(τ |π) = p(s0)

T−1∏
t=0

p(st+1|st, at)π(st, at)

with the state transition model p(st+1|st, at) being deter-

mined by the dynamics of the environment. The dynamics

is therefore of crucial importance, as it determines the

consequences of the agent’s actions, as well as the behaviours

that can be realized.

A. Policy Gradient Methods

For a parametric policy πθ with parameters θ, the objective

is to find the optimal parameters θ∗ that maximizes the

expected return θ∗ = arg maxθ J(πθ). Policy gradient

methods [33] is a popular class of algorithms for learning

parametric policies, where an estimate of the gradient of

the objective �θJ(πθ) is used to perform gradient ascent to

maximize the expected return. While the previous definition

of a policy is suitable for tasks where the goal is common

across all episodes, it can be generalized to tasks where an

agent is presented with a different goal every episode by

constructing a universal policy [34]. A universal policy is

a simple extension where the goal g ∈ G is provided as

an additional input to the policy π(a|s, g). The reward is

then also dispensed according to the goal r(st, at, g). In our

framework, a random goal will be sampled at the start of

each episode, and held fixed over the course the episode.

For the pushing task, the goal specifies the target location

for an object.

B. Hindsight Experience Replay

During training, RL algorithms often benefit from care-

fully shaped reward functions that help guide the agent to-

wards fulfilling the overall objective of a task. But designing

a reward function can be challenging for more complex

tasks, and may bias the policy towards adopting less optimal

behaviours. An alternative is to use a binary reward r(s, g)
that only indicates if a goal is satisfied in a given state,

r(s, g) =

{
0, if g is satisfied in s

−1, otherwise

Learning from a sparse binary reward is known to be chal-

lenging for most modern RL algorithms. We will therefore

leverage a recent innovation, Hindsight Experience Relay

(HER) [35], to train policies using sparse rewards. Consider

an episode with trajectory τ ∈ (s0, a0, ..., aT−1, sT ), where

the goal g was not satisfied over the course the trajectory.

Since the goal was not satisfied, the reward will be −1
at every timestep, therefore providing the agent with little

information on how to adjust its actions to procure more

rewards. But suppose that we are provided with a mapping

m : S → G, that maps a state to the corresponding

goal satisfied in the given state. For example, m(sT ) = g′

represents the goal that is satisfied in the final state of the

trajectory. Once a new goal has been determined, rewards can

be recomputed for the original trajectory under the new goal

g′. While the trajectory was unsuccessful under the original

goal, it becomes a successful trajectory under the new goal.

Therefore, the rewards computed with respect to g′ will not

be −1 for every timestep. By replaying past experiences with

HER, the agent can be trained with more successful examples

than is available in the original recorded trajectories. So far,

we have only considered replaying goals from the final state

of a trajectory. But HER is also amenable to other replay

strategies, and we refer interested readers to the original

paper [35] for more details.

IV. METHOD

Our objective is to train policies that can perform a task

under the dynamics of the real world p∗(st+1|st, at). Since

sampling from the real world dynamics can be prohibitive,

we instead train a policy using an approximate dynamics

model p̂(st+1|st, at) ≈ p∗(st+1|st, at) that is easier to

sample from. For all of our experiments, p̂ assumes the form

of a physics simulation. Due to modeling and other forms

of calibration error, behaviours that successfully accomplish

a task in simulation may not be successful once deployed

in the real world. Furthermore, it has been observed that

DeepRL policies are prone to exploiting idiosyncrasies of the

simulator to realize behaviours that are infeasible in the real

world [2], [7]. Therefore, instead of training a policy under

one particular dynamics model, we train a policy that can

perform a task under a variety of different dynamics models.

First we introduce a set of dynamics parameters μ that pa-

rameterizes the dynamics of the simulation p̂(st+1|st, at, μ).
The objective is then modified to maximize the expected

return across a distribution of dynamics models ρμ,

E
μ∼ρμ

[
Eτ∼p(τ |π,μ)

[
T−1∑
t=0

r(st, at)

]]

By training policies to adapt to variability in the dynamics

of the environment, the resulting policy might then better

generalize to the dynamics of real world.

A. Tasks

Our experiments are conducted on a puck pushing task

using a 7-DOF Fetch Robotics arm. Images of the real robot
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Fig. 2. Our experiments are conducted on a 7-DOF Fetch Robotics arm.
Left: Real robot. Right: Simulated MuJoCo model.

and simulated model is available in Figure 2. The goal g for

each episode specifies a random target position on the table

that the puck should be moved to. The reward is binary with

rt = 0 if the puck is within a given distance of the target,

and rt = −1 otherwise. At the start of each episode, the arm

is initialized to a default pose and the initial location of the

puck is randomly placed within a fixed bound on the table.

B. State and Action

The state is represented using the joint positions and

velocities of the arm, the position of the gripper, as well as

the puck’s position, orientation, linear and angular velocities.

The combined features result in a 52D state space. Actions

from the policy specify target joint angles for a position

controller. Target angles are specified as relative offsets from

the current joint rotations. This yields a 7D action space.

C. Dynamics Randomization

During training, rollouts are organized into episodes of a

fixed length. At the start of each episode, a random set of

dynamics parameters μ are sampled according to ρμ and held

fixed for the duration of the episode. The parameters which

we randomize include:

• Mass of each link in the robot’s body

• Damping of each joint

• Mass, friction, and damping of the puck

• Height of the table

• Gains for the position controller

• Timestep between actions

• Observation noise

which results in a total of 95 randomized parameters. The

timestep between actions specifies the amount of time an

action is applied before the policy is queried again to sample

a new action. This serves as a simple model of the latency

exhibited by the physical controller. The observation noise

models uncertainty in the sensors and is implemented as

independent Gaussian noise applied to each state feature.

While parameters such as mass and damping are constant

over the course of an episode, the action timestep and the

observation noise varies randomly each timestep.

D. Adaptive Policy

Manipulation tasks, such as pushing, have a strong depen-

dency on the physical properties of the system (e.g. mass,

friction, and characteristics of the actuators). In order to

determine the appropriate actions, a policy requires some

means of inferring the underlying dynamics of its environ-

ment. While the dynamics parameters are readily available

in simulation, the same does not hold once a policy has been

deployed in the real world. In the absence of direct knowl-

edge of the parameters, the dynamics can be inferred from a

history of past states and actions. System identification using

a history of past trajectories has been previously explored by

Yu et al. [24]. Their system incorporates an online system

identification module φ(st, ht) = μ̂, which utilizes a history

of past states and actions ht = [at−1, st−1, at−2, st−2, ...] to

predict the dynamics parameters μ. The predicted parameters

are then used as inputs to a universal policy that samples an

action according to the current state and inferred dynamics

π(at|st, μ̂). However, this decomposition requires identify-

ing the dynamics parameters of interest to be predicted at

runtime, which may be difficult for more complex systems.

Constructing such a set of parameters necessarily requires

some structural assumptions about the dynamics of a system,

which may not hold in the real world. Alternatively, SysID

can be implicitly embedded into a policy by using a recurrent

model π(at|st, zt, g), where the internal memory zt = z(ht)
acts as a summary of past states and actions, thereby pro-

viding a mechanism with which the policy can use to infer

the dynamics of the system. This model can then be trained

end-to-end and the representation of the internal memory can

be learned without requiring manual identification of a set

of dynamics parameters to be inferred at runtime.

E. Recurrent Deterministic Policy Gradient

Since HER augments the original training data recorded

from rollouts of the policy with additional data generated

from replayed goals, it requires off-policy learning. Deep

Deterministic Policy Gradient (DDPG) [2] is a popular off-

policy algorithm for continuous control. Its extension to

recurrent policies, Recurrent Deterministic Policy Gradient

(RDPG) [36], provides a method to train recurrent poli-

cies with off-policy data. To apply RDPG, we denote a

deterministic policy as π(st, zt, g) = at. In additional to

the policy, we will also model a recurrent universal value

function as Q(st, at, yt, g, μ), where yt = y(ht) is the value

function’s internal memory. Since the value function is used

only during training and the dynamics parameters μ of the

simulator are known, μ is provided as an additional input to

the value function but not to the policy. We will refer to a

value function with knowledge of the dynamics parameters

as an omniscient critic. This follows the approach of [37],

[38], where additional information is provided to the value

function during training in order to reduce the variance of

the policy gradients and allow the value function to provide

more meaningful feedback for improving the policy.

Algorithm 1 summarizes the training procedure, where

M represents a replay buffer [2], and θ and ϕ are the

parameters for the policy and value function respectively. We

also incorporate target networks [2], but they are excluded

for brevity.
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Algorithm 1 Dynamics Randomization with HER and

RDPG
1: θ ← random weights

2: ϕ ← random weights

3: while not done do
4: g ∼ ρg sample goal

5: μ ∼ ρμ sample dynamics

6: Generate rollout τ = (s0, a0, ..., sT )with dynamics μ
7: for each st, at in τ do
8: rt ← r(st, g)
9: end for

10: Store (τ, {rt}, g, μ) in M
11: Sample episode (τ, {rt}, g, μ) from M
12: with probability k
13: g ← replay new goal with HER

14: rt ← r(st, g) for each t
15: endwith

16: for each t do
17: Compute memories zt and yt
18: ât+1 ← πθ(st+1, zt+1, g)
19: ât ← πθ(st, zt, g)
20: qt ← rt + γQϕ(st+1, ât+1, yt+1, g, μ)
21: �qt ← qt −Qϕ(st, at, yt, g, μ)
22: end for
23: �ϕ = 1

T

∑
t �qt

∂Qϕ(st,at,yt,g,μ)
∂ϕ

24: �θ = 1
T

∑
t
∂Qϕ(st,ât,yt,g,μ)

∂a
∂ât

∂θ
25: Update value function and policy with �θ and �ϕ

26: end while

F. Network Architecture

A schematic illustrations of the policy and value networks

are available in Figure 4. The inputs to the network consist of

the current state st and previous action at−1, and the internal

memory is updated incrementally at every step. Each network

consists of a feedforward branch and recurrent branch, with

the latter being tasked with inferring the dynamics from

past observations. The internal memory is modeled using a

layer of LSTM units and is provided only with information

required to infer the dynamics (e.g. st and at−1). The

recurrent branch consists of an embedding layer of 128 fully-

connected units followed by 128 LSTM units. The goal g
does not hold any information regarding the dynamics of the

system, and is therefore processed only by the feedforward

branch. Furthermore, since the current state st is of particular

importance for determining the appropriate action for the

current timestep, a copy is also provided as input to the

feedforward branch. This presents subsequent layers with

more direct access to the current state, without requiring in-

formation to filter through the LSTM. The features computed

by both branches are then concatenated and processed by 2

additional fully-connected layers of 128 units each. The value

network Q(st, at, at−1, g, μ) follows a similar architecture,

with the query action at and parameters μ being processed

by the feedforward branch. ReLU activations are used after

Fig. 3. LSTM policy deployed on the Fetch arm. Bottom: The contact
dynamics of the puck was modified by attaching a packet of chips to the
bottom.

each hidden layer (apart from the LSTM). The output layer

of Q consists of linear units, while π consists of tanh output

units scaled to span the bounds of each action parameter.

V. EXPERIMENTS

Results are best seen in the supplemental video

youtu.be/HEhXX03KmE0. Snapshots of policies deployed

on the real robot are available in Figure 3. All simulations

are performed using the MuJoCo physics engine [39] with

a simulation timestep of 0.002s. 20 simulation timesteps are

performed for every control timestep. Each episode consists

of 100 control timestep, corresponding to approximately

4 seconds per episode, but may vary as a result of the

random timesteps between actions. Table I details the range

of values for each dynamics parameter. At the start of each

episode, a new set of parameters μ is sampled by draw-

ing values for each parameter from their respective range.

Parameters such as mass, damping, friction, and controller

gains are logarithmically sampled, while other parameters

are uniformly sampled. The timestep �t between actions

varies every step according to �t ∼ �t0 + Exp(λ), where

�t0 = 0.04s is the default control timestep, and Exp(λ)
is an exponential distribution with rate parameter λ. While

�t varies every timestep, λ is fixed within each episode.

Parameter Range
Link Mass [0.25, 4]× default mass of each link
Joint Damping [0.2, 20]× default damping of each joint
Puck Mass [0.1, 0.4]kg
Puck Friction [0.1, 5]
Puck Damping [0.01, 0.2]Ns/m
Table Height [0.73, 0.77]m
Controller Gains [0.5, 2]× default gains

Action Timestep λ [125, 1000]s−1

TABLE I

DYNAMICS PARAMETERS AND THEIR RESPECTIVE RANGES.
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Fig. 4. Schematic illustrations of the policy network (top), and value
network (bottom). Features that are relevant for inferring the dynamics of
the environment are processed by the recurrent branch, while the other inputs
are processed by the feedforward branch.

In addition to randomizing the physical properties of the

simulated environment, we also simulate sensor noise by

applying gaussian noise to the observed state features at

every step. The noise has a mean of zero and a standard

deviation of 5% of the running standard deviation of each

feature. Gaussian action exploration noise is added at every

step with a standard deviation of 0.01rad.

The real puck has a mass of approximately 0.2kg and

a radius of 0.065m. The goal is considered satisfied if the

puck is within 0.07m of the target. The location of the

puck is tracked using the PhaseSpace mocap system. When

evaluating performance on the physical system, each episode

Fig. 5. Joint trajectories recorded from the simulated and real robot when
executing the same target trajectories. The joints correspond to the shoulder,
elbow, and wrist of the Fetch arm.

consists of 200 timesteps. Little calibration was performed to

ensure that the behaviour of the simulation closely conforms

to that of the real robot. While more extensive calibration

will likely improve performance, we show that our policy

is nonetheless able to adapt to the physical system despite

poor calibration. To illustrate the discrepancies between the

dynamics of the real world and simulation we executed the

same target trajectory on the real and simulated robot, and

recorded the resulting joint trajectories. Figure 5 illustrates

the recorded trajectories. Given the same target trajectory,

the pose trajectories of the simulated and real robot differ

significantly, with varying degrees of mismatch across joints.

During training, parameter updates are performed using

the ADAM optimizer [40] with a stepsize of 5 × 10−4 for

both the policy and value function. Updates are performed

using batches of 128 episodes with 100 steps per episode.

New goals are sampled using HER with a probability of k =
0.8. Each policy is trained for approximately 8000 update

iterations using about 100 million samples, which requires

approximately 8 hours to simulate on a 100 core cluster.

A. Comparison of Architectures

To evaluate the impact of different architectural choices,

we compared policies modeled using different architectures

and tested their performance in simulation and on the real

robot. The first is an LSTM policy following the architecture

illustrated in Figure 4. Next we consider a memoryless

feedforward network (FF) that receives only the current state

st and goal g as input. As a baseline, we also trained

a memoryless feedforward network without randomization

(FF no Rand), then evaluated the performance with ran-

domization. To provide the feedforward network with more

information to infer the dynamics, we augmented the inputs

with a history of the 8 previously observed states and actions

(FF + Hist). The success rate is determined as the portion of

episodes where the goal is fulfilled at the end of the episode.

In simulation, performance of each policy is evaluated over

100 episodes, with randomized dynamics parameters for

each episode. Learning curves comparing the performance

of different model architectures in simulation are available

in Figure 6. Four policies initialized with different random

seeds are trained for each architecture. The LSTM learns

faster while also converging to a higher success rate than

Fig. 6. Learning curves of different network architectures. Four policies
are trained for each architecture with different random seeds. Performance
is evaluated over 100 episodes in simulation with random dynamics.
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Fig. 7. Performance of different models when deployed on the simulated
and real robot for the pushing task. Policies are trained using only data from
simulation.

the feedforward models. The feedforward network trained

without randomization is unable to cope with unfamiliar

dynamics during evaluation. While training a memoryless

policy with randomization improves robustness to random

dynamics, it is still unable to perform the task consistently.

Next, we evaluate the performance of the different models

when deployed on the real Fetch arm. Figure 7 compares

the performance of the final policies when deployed in

simulation and the real world. Table II summarizes the

performance of the models. The target and initial location

of the puck is randomly placed within a 0.3m × 0.3m
bound. While the performance of LSTM and FF + Hist

policies are comparable in simulation, the LSTM is able to

better generalize to the dynamics of the physical system. The

feedforward network trained without randomization is unable

to perform the task under the real world dynamics.

B. Ablation

To evaluate the effects of randomizing the various dy-

namics parameters, we trained policies with subsets of the

parameters held fixed. A complete list of the dynamics

parameters are available in Table I. The configurations we

consider include training with a fixed timestep between

actions, training without observation noise, or with fixed

mass for each link. Table III summarizes the performance

of the resulting policies when deployed on the real robot.

Disabling randomization of the action timestep, observation

noise, link mass, and friction impairs the policies’ ability to

adapt to the physical environment. Policies trained without

randomizing the action timestep and observation noise show

particularly noticeable drops in performance. This suggests

that coping with the latency of the controller and sensor noise

are important factors in adapting to the physical system.

C. Robustness

To evaluate the robustness of the LSTM policy to different

dynamics when deployed on the real robot, we experimented

with changing the contact dynamics of the physical system

by attaching a packet of chips to the bottom of the puck.

The texture of the bag reduces the friction between the puck

and the table, while the contents of the bag further alters the

contact dynamics. Nonetheless, the LSTM policy achieves

a success rate of 0.91 ± 0.04, which is comparable to the

success rate without the attachment 0.89± 0.06. The policy

Model Success (Sim) Success (Real) Trials (Real)
LSTM 0.91 ± 0.03 0.89 ± 0.06 28
FF no Rand 0.51± 0.05 0.0± 0.0 10
FF 0.83± 0.04 0.67± 0.14 12
FF + Hist 0.87± 0.03 0.70± 0.10 20

TABLE II

PERFORMANCE OF THE POLICIES WHEN DEPLOYED ON THE SIMULATED

AND REAL ROBOT. PERFORMANCE IN SIMULATION IS EVALUATED OVER

100 TRIALS WITH RANDOMIZED DYNAMICS PARAMETERS.

Model Success Trials
all 0.89 ± 0.06 28
fixed action timestep 0.29± 0.11 17
no observation noise 0.25± 0.12 12
fixed link mass 0.64± 0.10 22
fixed puck friction 0.48± 0.10 27

TABLE III

PERFORMANCE OF LSTM POLICIES ON THE REAL ROBOT, WHERE THE

POLICIES ARE TRAINED WITH SUBSETS OF PARAMETERS HELD FIXED.

also develops clever strategies to make fine adjustments to

position the puck over the target. One such strategy involves

pressing on one side of the puck in order to partially upend

it before sliding it to the target. Other strategies including

manipulating the puck from the top or sides depending on the

required adjustments, and correcting for case where the puck

overshoots the target. These behaviours emerged naturally

from the learning process using only a sparse binary reward.

VI. CONCLUSIONS

We demonstrated the use of dynamics randomization

to train recurrent policies that are capable of adapting

to unfamiliar dynamics at runtime. Training policies with

randomized dynamics in simulation enables the resulting

policies to be deployed directly on a physical robot despite

poor calibrations. By training exclusively in simulation, we

are able to leverage simulators to generate a large volume

of training data, thereby enabling us to use powerful RL

techniques that are not yet feasible to apply directly on a

physical system. Our experiments with a real world pushing

tasks showed comparable performance to simulation and the

ability to adapt to changes in contact dynamics. We also

evaluated the importance of design decisions pertaining to

choices of architecture and parameters which to randomize

during training. We intend to extend this work to a richer

repertoire tasks and incorporate more modalities such as

vision. We hope this approach will open more opportunities

for developing skillful agents in simulation that are then able

to be deployed in the physical world.
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