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Fig. 1. A visualization of a physically simulated character traversing a complex terrain using different agile parkour skills. Our framework starts with a
small dataset of terrain traversal motions, and then performs an iterative dataset augmentation loop that progressively expands the capabilities of a motion
generation model and a physics-based motion tracking controller.

Humans excel in navigating diverse, complex environments with agile motor
skills, exemplified by parkour practitioners performing dynamic maneuvers,
such as climbing up walls and jumping across gaps. Reproducing these agile
movements with simulated characters remains challenging, in part due to
the scarcity of motion capture data for agile terrain traversal behaviors
and the high cost of acquiring such data. In this work, we introduce PARC
(Physics-based Augmentation with Reinforcement Learning for Character
Controllers), a framework that leverages machine learning and physics-
based simulation to iteratively augment motion datasets and expand the
capabilities of terrain traversal controllers. PARC begins by training a motion
generator on a small dataset consisting of core terrain traversal skills. The
motion generator is then used to produce synthetic data for traversing new
terrains. However, these generated motions often exhibit artifacts, such as
incorrect contacts or discontinuities. To correct these artifacts, we train a
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physics-based tracking controller to imitate the motions in simulation. The
corrected motions are then added to the dataset, which is used to continue
training the motion generator in the next iteration. PARC’s iterative process
jointly expands the capabilities of the motion generator and tracker, creat-
ing agile and versatile models for interacting with complex environments.
PARC provides an effective approach to develop controllers for agile terrain
traversal, which bridges the gap between the scarcity of motion data and
the need for versatile character controllers.
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1 INTRODUCTION
Humans possess the remarkable ability to navigate through diverse
and complex environments by employing a broad range of agile mo-
tor skills. A prime example of human agility can be seen in parkour
practitioners, who regularly demonstrate extraordinary athleticism
by stylishly traversing obstacles using dynamic combinations of
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maneuvers, such as vaulting, climbing, and jumping. Developing
simulated characters that can achieve comparable versatility re-
mains a significant challenge. Current state-of-the-art methods for
training physics-based controllers predominantly rely on motion
capture data, using imitation objectives to guide the learning process
towards natural and human-like behaviors. Due to the challenges of
capturing highly athletic interactions with complex environments,
there is little data available of human athletes traversing diverse
terrains with agile motor skills. Moreover, acquiring large quanti-
ties of high quality motion data for such athletic behaviors can be
exorbitantly expensive.
Human motion capture data is important for training character

controllers that can move in a natural and life-like manner. While
recording a large volume of data from human athletes can be costly,
it is feasibly economical to capture a narrow set of high quality
motion data depicting core terrain-traversal skills. A simple data
augmentation method leveraging generative models may be to first
train a motion generator on this small initial dataset, then use the
generative model to automatically generate an expanded synthetic
dataset of more diverse behaviors. This augmented dataset can be
used to further train the motion generator to improve its generation
capabilities for traversing more difficult and diverse environments.
This self-consuming process can be performed iteratively to create a
sufficiently large dataset suitable for training a general and effective
terrain traversal controller.
However, a motion generator trained on a small dataset often

produces low-quality, physically implausible motions, especially in
unfamiliar scenarios. These artifacts—such as incorrect contacts,
floating, sliding, or discontinuities—can degrade the generator’s
performance over the iterations. To mitigate this progressive degra-
dation, we leverage physics simulation by training a motion imita-
tion controller to correct these artifacts. Instead of using the raw
generated motions, the physically corrected motions are added to
the dataset, improving the physical realism of the synthetic data and
stabilizing the training process throughout the iterative process.
Building on this idea, we introduce PARC (Physics-based Aug-

mentation with Reinforcement Learning for Character Controllers),
a framework that takes a small initial motion dataset as input and
outputs a motion tracking controller for traversing complex terrains.
PARC iteratively trains a motion generator and motion tracker to
augment a motion dataset, progressively expanding the capabili-
ties of both models. The motion generator synthesizes new terrain
traversal motions, while the motion tracker refines them to ensure
physical plausibility before adding the motion clips to the dataset.
This expanded dataset is used to continuously train both the gen-
erator and tracker, enhancing their versatility. Through multiple
iterations, PARC develops an expressive motion generator and an
agile motion-tracking controller. Together, these components en-
able precise control of a simulated character, allowing it to agilely
navigate complex obstacle-filled environments. The code and data
used to train PARC, as well as the models and data generated by
PARC, can be found at https://github.com/mshoe/PARC.

2 RELATED WORK
Recent advances in machine learning have led to a surge of tech-
niques that are capable of automatically producing high-fidelity hu-
man motions, which span both kinematics-based methods [Holden
et al. 2017; Rempe et al. 2021; Starke et al. 2019] and physics-based
methods [Fussell et al. 2021; Peng et al. 2018, 2022, 2021; Yao et al.
2022]. However, generating highly dynamic character-scene inter-
action behaviors remains a persistent challenge due to limited data
availability. The constraints imposed by complex scenes also place
more stringent demands onmotion quality, as they are susceptible to
more pronounced artifacts, such as floating and terrain collisions. In
this section, we review the most relevant prior work on generating
interactive motion under imposed terrain constraints.

2.1 Kinematic Motion Generation
Given abundant, high-quality motion data, kinematic motion gener-
ation models can effectively synthesize complex human behaviors.
Holden et al. [2020, 2017] introduced a phase-based auto-regressive
model that is able to generate locomotion behaviors on irregular
terrain. Li et al. [2024]; Yi et al. [2024] leveraged the expressiveness
of diffusion models to synthesize scene-aware motions. While these
works have shown promising results, they often struggle to gener-
alize to new scenarios not captured in the original training dataset.
Furthermore, their lack of physics-based simulation often leads to
artifacts such as floating, ground penetration, and self-collision,
compromising the realism of the synthesized motions.

2.2 Physics-based Character Control
Physics-based character simulation has been explored as a means to
procedurally generate novel behaviors in scenarios where motion
data may be scarce. For example, to model human athletic skills,
existing works have developed physics-based controllers capable
of replicating a wide range of dynamic sports, including parkour
[Liu et al. 2012], tennis [Zhang et al. 2023], table tennis [Wang et al.
2024a], soccer [Xie et al. 2022], boxing [Won et al. 2021], basketball
[Liu andHodgins 2018;Wang et al. 2024b], and climbing [Naderi et al.
2017]. However, many of the methods introduced in these studies
rely heavily on imitating existing motion data, thereby limiting their
applicability in domains where high-quality motion data is scarce
or all together unavailable.

Methods that combine physics-based and kinematic methods can
leverage the advantages of these two paradigms to further enhance
motion quality, diversity, and generalization, while also mitigating
artifacts that violate physical principles. Bergamin et al. [2019]
employed motion matching as a kinematic planner and trained a
physics-based controller to track the planner’s motions. Jiang et al.
[2023] utilized generative motion priors and projective dynamics for
natural character behaviors. Yuan et al. [2023] applied physics-based
tracking to refine motion diffusion outputs. These approaches rely
on high-quality motion datasets for training their kinematic and
tracking models. In contrast, our method iteratively trains a motion
generator and tracker using an initially small dataset, expanded
with physics-corrected motions.
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2.3 Motion Control for Terrain Traversal
Developing motor controllers capable of agile traversal across com-
plex terrains has been an active area of research spanning multiple
fields, from robotics to computer graphics. Liu et al. [2012] trained
controllers specialized for traversing different types of obstacles and
then employed manually designed planners to sequence these skills,
enabling the traversal of sequences of different obstacles. Peng et al.
[2017] proposed a hierarchical reinforcement learning framework
for training controllers capable of complex locomotion tasks such
as ball dribbling across terrains, trail following, and obstacle avoid-
ance. Yu et al. [2021] presented an algorithm that produces a control
policy and scene arrangement to imitate dynamic terrain-traversal
motions from video.

In the field of robotics, there is a large body of work that applied
reinforcement learning methods to train controllers that enable
legged robots to traverse through environments with obstacles using
agile locomotion skills [Hoeller et al. 2024; Zhang et al. 2024]. While
some techniques can generate highly dynamic locomotion skills
without relying on demonstrations or reference motion data, the
resulting controllers are prone to producing unnatural behaviors.

2.4 Data Augmentation
Data augmentation has been an essential technique to prevent over-
fitting and improve generalization since the advent of the deep
learning [Krizhevsky et al. 2012; Shorten and Khoshgoftaar 2019].
Data augmentation has also been a vital tool in many character
animation frameworks [Holden et al. 2017; Park et al. 2019a]. More
recently, researchers have explored self-consuming generative mod-
els as a more powerful methodology to automate data augmentation.
Gillman et al. [2024] showed that self-consuming motion diffusion
models experience mode collapse, unless a self-correcting function
is used. To mitigate model collapse when training on self generated
data, Gillman et al. [2024] incorporated a pre-trained physically
simulated motion tracking controller [Luo et al. 2021] as a correc-
tion function for physically implausible motion artifacts. While the
previous work uses physics-based motion trackers as correction
functions, our work integrates the motion tracker as a component
of the self-consuming loop by continually training the tracker to
correct the synthetic motions produced by the motion generator.
Our work also applies the self-consuming, self-correcting loop to
the challenging task of terrain traversal.

3 BACKGROUND
In this section, we review the core machine learning concepts under-
lying our framework. First, we discuss diffusion models, the primary
architecture used for the motion generators. Next, we cover rein-
forcement learning, the paradigm used to train physically simulated
motion tracking controllers.

3.1 Diffusion Models
A generative model is trained to generate samples from an unknown
data distribution, which is approximated with a dataset of samples
D. Diffusion models are a type of generative model which have
recently been shown to be effective for motion synthesis [Tevet et al.
2023]. A diffusion model learns to generate samples from a data

distributionD by learning to reverse a diffusion process. A diffusion
process takes a sample x0 fromD, and slowly converts it to a sample
from a standard Gaussian distribution by iteratively applying noise
to the sample. At the final diffusion timestep 𝐾 , the distribution
converges to a standard Gaussian 𝑥𝐾 ∼ N(0, I). While the original
DDPM formulation trains a denoising model to predict the noise
applied to the original data sample [Ho et al. 2020], many motion
diffusion models choose to train a denoising model 𝐺 that directly
predicts the denoised motion sample instead [Cohan et al. 2024;
Tevet et al. 2023]. Please refer to Karunratanakul et al. [2023] for a
more detailed discussion between the two options. The denoising
model is trained using a simple reconstruction objective:

Lrec (𝐺) := Ex0,C∼𝐷E𝑘∼𝑝 (𝑘 )Ex𝑘∼𝑞 (x𝑘 |x0 )
[
| |x0 −𝐺 (x𝑘 , 𝑘, C)||2

]
,

(1)
where 𝑝 (𝑘) represents the diffusion timestep distribution (e.g. uni-
form distribution between [1, 𝐾]), and C is a context associated
with the sample x0 (e.g. text, control signal, etc.). After training, a
reverse diffusion process can be applied to generate samples using
the denoising model.

3.2 Reinforcement Learning
Reinforcement learning has been an effective paradigm for develop-
ing controllers for a wide range of tasks [Duan et al. 2016; Peng et al.
2017]. In reinforcement learning, an agent interacts with its envi-
ronment according to a policy 𝜋 to maximize an objective [Sutton
and Barto 2018]. At each time step 𝑡 , the agent observes the state of
the environment 𝑠𝑡 . The agent then samples and executes an action
from a policy a𝑡 ∼ 𝜋 (a𝑡 |s𝑡 ). The next state s𝑡+1 is then determined
by the environment dynamics s𝑡+1 ∼ 𝑝 (s𝑡+1 |s𝑡 , a𝑡 ). After every
state transition, the agent receives a scalar reward determined by a
reward function 𝑟𝑡 = 𝑟 (s𝑡 , a𝑡 , s𝑡+1). The agent’s objective is to learn
a policy that maximizes its expected discounted return 𝐽 (𝜋),

𝐽 (𝜋) = E𝑝 (𝜏 |𝜋 )

[
𝑇−1∑︁
𝑡=0

𝛾𝑡𝑟𝑡

]
, (2)

where 𝑝 (𝜏 |𝜋) represents the likelihood of a trajectory 𝜏 under policy
𝜋 , 𝑇 denotes the time horizon of a trajectory, and 𝛾 ∈ [0, 1] is a
discount factor.

4 SYSTEM OVERVIEW
In this work, we present PARC (Physics-based Augmentation with
Reinforcement Learning for CharacterControllers), an iterative data
augmentation framework for training agile terrain traversal con-
trollers for physically simulated characters. An overview of PARC
is available in Figure 2. Our framework consists of two main compo-
nents, a motion generator that generates kinematic motions given
a target terrain, and a physics-based motion tracker that corrects
artifacts in the generated motions by leveraging physical simulation.
These two components are applied iteratively to augment the mo-
tion dataset, progressively expanding the versatility of the generator
and capabilities of the tracker.
PARC starts with a small initial motion-terrain dataset D0. At

each iteration 𝑖 , PARC trains a motion generation model 𝐺𝑖 on the

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.



4 • Michael Xu, Yi Shi, KangKang Yin, and Xue Bin Peng

Fig. 2. Overview of the PARC framework. PARC iteratively trains a motion
generator and motion tracker with self-generated motion data. The motion
generator produces kinematic motion sequences to train the motion tracker,
while the motion tracker corrects physics-related artifacts in a simulator,
enabling the motion generator to continue training on new physics-based
motions.

datasetD𝑖−1 from the previous iteration. Next,𝐺𝑖 is used to synthe-
size newmotions M̃𝑖 for traversing new terrains. After synthesizing
new motions, a motion tracking policy 𝜋𝑖 is trained to enable a sim-
ulated character to imitate the motions from the combined dataset
D𝑖−1 ∪ M̃𝑖 . Once trained, 𝜋𝑖 is used to record physically corrected
motionsM𝑖 by tracking M̃𝑖 in simulation. Finally, the physically
corrected motions are then added to the dataset D𝑖 ← D𝑖−1 ∪M𝑖 .

An important characteristic of PARC is that themodels are trained
in a continual manner. The generator 𝐺𝑖 and policy 𝜋𝑖 of each
stage is initialized with the trained models from the previous stage,
utilizing past experience to accelerate the learning of new motions.
The final motion generation model can be used to synthesize target
motions on new terrains, and the physics-based motion tracker
can then follow the target motion to control a physically simulated
character to traverse new environments.

5 MOTION GENERATOR
The motion generator is one of the main components of PARC’s self-
augmentation loop, and acts as a planner that generates kinematic
motions for traversing a given terrain. The motion generator is
represented as a diffusion model [Ho et al. 2020] trained to generate
motion sequences while conditioned on a local terrain heightmap
and target direction. An overview of our network architecture is
shown in Figure 3. Given an input context C, the motion generator
predicts a motion sequence x = {x1, x2, · · · , x𝑁 } for traversing the
terrain along the desired direction. Each frame x𝑖 of the motion
sequence x is represented using a set of features consisting of:

• p0 ∈ R3, root position
• q0 ∈ R3, root rotation
• q ∈ R𝐽 ×3, joint rotations
• p ∈ R𝐽 ×3, joint positions
• c ∈ [0, 1] 𝐽 , contact labels

where 𝐽 denotes the number of joints in the character’s body. All
rotations are represented with exponential maps.

The input contextC to the diffusionmodel consists of a heightmap
h, recorded in the character’s local coordinate frame, the horizontal
target direction d ∈ R2, and the first two frames of the motion
sequence. These first two frames are an optional condition, allowing
our model to both generate an initial motion sequence given no
previous frames and also generate long-horizon motion sequences
autoregressively. Conditioning on two input frames, instead of one,
provides the model with velocity information.

The diffusion model is implemented with a transformer encoder
architecture, similar to MDM [Tevet et al. 2023]. An illustration of
the model architecture is available in Figure 3. The generator 𝐺
receives as input the context, C = {h, d, x1, x2}, the noisy motion
frames x𝑘 , and diffusion timestep 𝑘 . The generator then predicts
the clean motion sequence x̂0,

𝐺 (𝑘, x𝑘 , C) = x̂0 = {x̂1
0, x̂

2
0, · · · , x̂

𝑁
0 } (3)

The input diffusion timestep 𝑘 , heightmap h, target direction d, and
noisy frames x𝑘 are first encoded using different embedding net-
works to map each into tokens for the transformer. The heightmap
observations are processed with a convolutional neural network,
and the image patches are extracted and processed into tokens by an
MLP. The target direction is encoded with an MLP to produce one
token, and each frame of the input motion sequence x𝑘 is encoded
into a token with an MLP. When the first two frames (x1

0, x
2
0) are

given, they replace the frames (x1
𝑘
, x2
𝑘
) in the output sequence, and

are encoded with the same encoding network. Positional encoding is
applied to all tokens. The output token sequence is passed through
a final MLP that maps it to the denoised motion x̂0.

5.1 Motion Data Sampling
The motion generator is trained to generate motions for travers-
ing new terrains using a dataset of motion clips paired with their
respective terrains. When a motion clip is sampled, a half-second
motion sequence is selected uniformly from the frames of the mo-
tion clip. Figure 3 illustrates the features that are extracted from
each sequence. The motion sequence is split into 13 future frames
and 2 past frames. Each frame within a sequence is canonicalized
relative to the second frame, which is treated as the most recent
frame that the generator is conditioning on. A random future frame
is used to determine the target direction.

The sampling of the local heightmap from the global terrain geom-
etry associated with the motion clip is done using a 31× 31 uniform
grid of points, canonicalized to the second frame of the motion.
The sampled heightmaps are augmented with randomly oriented
boxes with varying heights to improve generalization when given
out of distribution heightmap observations. A collision-avoidance
technique is employed to ensure these boxes do not add terrain
penetration to the motion, as detailed in Appendix A.

5.2 Training
The motion generator is trained following the standard DDPM pro-
cess illustrated in Equation 1 , but with additional geometric loss
terms, which are introduced to better capture the spatial coherence
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Fig. 3. The transformer encoder based architecture of the terrain-
conditioned motion generator. h is first processed by a CNN into an image
of shape 64x16x16, then unfolded into 64 non-overlapping image patches
of shape 64x2x2. The image patches are then embedded into tokens with
an MLP. The target direction d is embedded into a single token with an
MLP. Each frame of the noisy motion sequence x𝑘 is embedded into a token
using an MLP.

and physical plausibility of generated motions. Training is done by
iteratively sampling x𝑘 for 𝑘 ∼ [1, 𝐾], predicting x̂0, and computing
a diffusion model loss. The training loss is given by:

L(𝐺) = Lrec (𝐺) + Lvelocity (𝐺) + Ljoint (𝐺) + Lpen (𝐺), (4)

where Lrec is the reconstruction loss, Lvelocity is a velocity loss,
Ljoint is a joint consistency loss, and Lpen is a terrain penetration
loss. Details of these losses are provided in Appendix D.1.

5.3 Terrain-Aware Motion Generation
One of the core challenges for training a terrain-conditioned motion
generator is ensuring the generated motions respect the surround-
ing terrain, either by not penetrating the terrain, or by employing
physically plausible motor skills to interact with the terrain. When
trained only on the small initial dataset D0, 𝐺 tends to produce
motions that ignore the physical constraints imposed by the ter-
rain such as running into a wall instead of climbing over it. We
hypothesize that when generating a motion autoregressively, 𝐺
is overfitting to the previous frames as a consequence of using a
small dataset. This focus on the previous frame results in the motion
generator ignoring the terrain condition, leading to motions that
fail the comply with the surrounding terrain. Our first technique
to address this issue is to train 𝐺 with an auxiliary motion-terrain
penetration loss Lpen, details of which are available in Appendix C.
To further improve the generated motion’s compliance with a given
terrain, during training with 10% probability we use the generator
to synthesize motions on random terrains and apply the terrain
penetration loss to resolve intersections with the terrain while also
disabling the reconstruction loss. This approach encourages the
model to avoid terrain penetration, even when confronted with
unexpected variations in the terrain.

Incorporating terrain-penetration loss during training encourages
the motion generator to better adhere to the surrounding terrain.
However, we found that results could still be improved by using an
additional technique to further enhance terrain compliance. From
our hypothesis that motion-terrain penetration is a result of over-
fitting to previous frames, we blend the output of our model when
conditioned with and without the previous frames. This approach is
similar to classifier-free guidance [Ho and Salimans 2022], and pro-
vides a tradeoff between temporally smooth motions with respect to
the previous frames, and terrain-compliant motions. Motions with
smoothness artifacts can be corrected by the physics-based motion
tracking controller, while motions that severely violate terrain con-
straints, such as running through a wall, cannot be reproduced in
simulation. The blended denoising update is determined by:

𝐺blend
(
𝑘, x𝑘 , C =

(
h, d, x1

0, x
2
0

))
= 𝑠𝐺 (𝑘, x𝑘 , C = (h, d)) + (1 − 𝑠)𝐺

(
𝑘, x𝑘 , C =

(
h, d, x1

0, x
2
0

))
,

(5)

where 𝑠 is the blending coefficient. We found that 𝑠 = 0.65 works
well. To faciliate this blending during inference,𝐺 (𝑘, x𝑘 , C = {h, d})
is trained simultaneously with 𝐺 (𝑘, x𝑘 , C =

{
h, d, x1

0, x
2
0
}
) by ran-

domly masking the attention to the two previous frame tokens x1
0

and x2
0 with a 15% chance. At test time, evaluating the unconditional

and conditional models is done by supplying the corresponding
attention mask to the inputs.

5.4 Synthesizing New Motions
Given a terrain and a path, our trained model can generate long mo-
tion sequences by conditioning autoregressively on its own output
frames. We use this in combination with procedurally generated
terrains to synthesize newmotions at each iteration. While a motion
tracking controller can correct physics-based artifacts in a reference
motion, low quality motions may be too challenging for the tracker
to follow. Therefore, two techniques are incorporated to reduce
artifacts in the generated motions. First, motions are generated in
batches of 64 sequences at a time, and a heuristic loss is used to
select the best motion within the batch. The heuristic loss combines
a contact loss, penetration loss, and path incompletion penalty. Once
a motion has been selected within a batch, the motion is refined us-
ing kinematic optimization techniques to mitigate artifacts such as
jittering, terrain penetration, and contact consistency. More details
on the kinematic correction procedure are available in Appendix E.

6 TRACKING CONTROLLER
In this section, we detail the process for training a controller capable
of executing the generated kinematic motion sequences in simula-
tion to enable a physically simulated character to traverse complex
environments. The character is controlled using a motion tracking
controller, trained with reinforcement learning on the kinematically
generatedmotions. Our motion tracking controller follows the Deep-
Mimic framework [Peng et al. 2018], and all physics simulations are
performed using Isaac Gym [Makoviychuk et al. 2021].

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.



6 • Michael Xu, Yi Shi, KangKang Yin, and Xue Bin Peng

Fig. 4. Long-horizon physics based motions generated using the final motion generator and motion tracker of PARC.

6.1 Observation and Action Representation
The actions from the policy specifies the target orientations for
PD controllers positioned at each joint. The policy is queried at
30𝐻𝑧, while the physics simulation is performed at 120𝐻𝑧. The
observations of the agent consist of its proprioceptive state, its local
terrain observations, and future target frames from the reference
motion. The proprioceptive state consists of the agent’s root position
proot, root rotation qroot, joint rotations q1:𝑁joints , joint positions
p1:𝑁joints and contact labels c1:𝑁joints . The local terrain observations
are represented using a heightmap of points h sampled around the
character. The target states sref are specified by the reference motion
clip, and all features are canonicalized with respect to the character’s
local frame. The local frame of the character is defined with the
origin at the root, the x-axis facing the root link’s facing direction,
and the z-axis aligned with the global up vector.

6.2 Training
The physics-based controller is trained with a DeepMimic-inspired
motion-tracking objective, enabling it to navigate diverse terrains
by replicating the kinematic motions generated by the motion gener-
ator. The tracking reward is designed to encourage the controller to

minimize the differences between the agent and reference motion’s
root position, root velocity, joint rotations, joint velocities, key body
positions, and contact labels. The contact label is a binary signal
that specifies whether a body is in contact with the environment.
We found that matching the reference motion’s contacts is vital for
ensuring the simulated character interacts with an environment
using naturalistic contact configurations. A detailed description of
the reward function is available in Appendix F. The policy network
is represented with three fully connected layers with 2048, 1024,
and 512 units, and is trained using Proximal Policy Optimization
[Schulman et al. 2017], with advantages computed using GAE(𝜆)
[Schulman et al. 2015]. The value function is trained using target
values computed with TD(𝜆) [Sutton and Barto 2018].

6.3 Physics-Based Motion Correction
Once the tracking controller is trained in each iteration, it is uti-
lized to generate physics-corrected versions of the kinematically
produced motions. These corrected motions, recorded within the
simulation, effectively reduce physics-related artifacts present in
the original kinematic motions. The successfully recorded motions
are subsequently added to the motion dataset, which is then used
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to continue training the motion generator in the next iteration of
PARC. A recorded motion is considered unsuccessful if the char-
acter fails to reach the end of the motion. Some reference motions
may have large artifacts or challenging frames in their early frames,
making it difficult to track. To help increase the output of successful
recorded motions from our tracking controller, we initialize the
character at different times along the motion, and then the earli-
est initialization that successfully reaches the final frame will be
recorded as additional motion data.

7 EXPERIMENTS
Our initial parkour dataset consists of new motion capture data for
various terrain traversal skills such as vaulting, climbing, jumping,
and running. 5.5 seconds of motion clips are also recorded from
the Unreal Engine Game Animation Sample Project [Unreal Engine
2024]. The corresponding terrains for each motion clip are manually
reconstructed to fit each motion. The contact labels in the original
dataset are manually labeled. The original dataset contains a total
of 14 minutes and 7 seconds of motion data, depicting parkour skills
such as climbing, vaulting, running on flat and bumpy ground, mov-
ing on and off platforms, and going up and down stairs. Examples
of motions in the original dataset can be seen in Figure 5.

Fig. 5. Examples of terrain-traversal motions found in our original dataset.
The terrain is typically very simple, and the vast majority of clips focus on
showcasing one particular parkour skill such as jumping (top), running up
stairs (middle), and climbing walls (bottom).

Fig. 6. A visualization of the distribution of the final relative horizontal
(XY) root positions from motion clips in the dataset as at different PARC
iterations. As the PARC iterations increase (left to right, top to bottom), the
dataset expands and increases the diversity of trajectories.

Since the original motion dataset is relatively small, there is a
severe lack of spatial diversity, with most terrain-traversal skills
being performed on terrains with fixed heights. To improve the
spatial variations of the dataset, we applied random adjustments
to the terrains, and used manually-designed heuristics to adapt the
motions to the adjusted terrains. To improve the physical plausibility
of the adjusted motions, we also trained a physics-based motion
tracking controller on this augmented dataset and then recorded
the motions performed by the physically simulated character. The
simulation environment is able to detect and label accurate contact
labels automatically. This process is repeated to generate 50 spatial
variations of each motion clip in the original dataset, increasing the
coverage of terrain variations for our input dataset to the PARC
framework. The initial synthetic data expansion does take advantage
of the generative capabilities of the motion generator to discover
new skills, and is only used to improve the motion generator in the
initial iteration of PARC.

Given the initial dataset, the PARC framework is applied for three
iterations using a single A6000 GPU, requiring approximately one
month to complete. In the first two iterations, the motion generator
is used to generate approximately 1000 new motions on randomly
generated terrains. In both the third and fourth iterations, themotion
generator is used to generate 2000 motions on a large manually
designed terrain, more details of which are available in Appendix
A. All generated motions have a maximum length of 10 seconds.
A visualization of the dataset expansion can be seen in Figure 6,
where the net root horizontal displacement of every motion clip is
plotted as a distribution. The initial dataset contained many forward-
moving motions, but as training progressed, trajectories became
more diverse, covering a wider range of directions.
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7.1 Novel Behaviors
Our PARC framework can generate novel behaviors that go beyond
those in the original dataset, enabling traversal of significantly more
complex and diverse terrains. Examples of new behaviors generated
by our framework are shown in Figure 7. The physically simulated
character is able to sequence together different skills such as jumping
across a gap and catching onto a ledge. Furthermore, the models
can be used to generate significantly longer motions for traversing
complex terrains. First, given a target path and a large terrain, the
motion generator is used to autoregressively generate a kinematic
target motion. Then, the motion tracker follows the target motion
to traverse across the terrain. Examples of behaviors produced by
the simulated character are shown in Figure 4. The time required
to generate each 0.5 seconds of motion with a batch size of 32 is
approximately 12 seconds on an A6000 GPU. For the long-horizon
examples, a batch size of 32 is used and heuristic criteria are applied
to automatically select the best motion (see Appendix E).

Table 1. Quantitative results of our motion generators across PARC itera-
tions with the best values bolded. These metrics measure various aspects of
motion quality, and include FWD (final waypoint distance), TPL (terrain
penetration loss), TCL (terrain contact loss), and %HJF (percentage of high
jerk frames). The motion generators from each iteration are used to generate
32 motions for each of the 100 test terrains. The average value across all
3200 generated test motions is reported for each metric.

Iteration FWD ↓ TPL ↓ TCL ↓ %HJF ↓
1 1.908 2093 114.1 10.70
2 1.586 705.5 9.761 4.387
3 0.747 448.2 8.070 3.238
4 0.596 179.6 9.763 2.730

no physics correction 1.572 547.3 17.44 18.68

7.2 Motion Generator Performance
To evaluate the improvements to the motion generator from each
PARC iteration, we conducted a quantitative experiment evaluat-
ing a large number of generated motions. We created 100 new test
terrains and target paths using a procedural terrain generation al-
gorithm different from the one used for the augmented dataset.
Next, we applied various iterations of our PARC motion generator
to produce 32 motions for each terrain, resulting in a total of 3200
motions for each PARC iteration. Blended denoising is applied with
a coefficient of 𝑠 = 0.65, and DDIM with a stride of 5 is used to gen-
erate motions along the target paths. No kinematic or physics-based
motion corrections are applied to the generated kinematic motions.
Four heuristic metrics are used to evaluate the quality of the gener-
ated motions: final waypoint distance (FWD), terrain penetration
loss (TPL), terrain contact loss (TCL), and percentage of high jerk
frames (%HJF). The final waypoint distance measures the distance
between the root position of the last generated frame and the target
position at the end of a path. High jerk frames are determined as any
frame where the jerk of any joint is greater than the maximum joint
jerk observed in the original mocap dataset, which is approximately
11666 𝑚/𝑠3. Table 1 and Figure 9 summarize the performance of
the different models. The metrics exhibit significant improvements

as the number of PARC iterations progresses. To demonstrate the
importance of physics-based correction, we include an experiment

Fig. 7. Examples of novel physics-based motions generated by PARC. (Left)
A character combines a jumping motion with a climbing motion to catch
onto a higher ledge. (Middle) A character first jumps a gap, then holds onto
a ledge and drops. While falling, the character uses their hands to catch
onto another ledge before landing. (Right) A character climbs down and
then runs on and off a platform, landing on a lower ground level.
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where we trained a motion generator using uncorrected motions
from the first PARC iteration (labeled "no correction"). We use the
selection heuristic (described in Appendix E) to filter motions for
terrain penetration and contact losses, with no other correction
technique to highlight the importance of the physics-based motion
tracking stage.

Table 2. Quantitative results of our motion tracker for different PARC itera-
tions. The success rate is the tracker’s average rate of motion completion
over 100 generated test motions. The joint tracking error is computed using
an average of 2048 episodes for each of the 100 generated test motions at
random initial timesteps.

Iteration Success Rate (%) ↑ Joint Tracking Error (m) ↓
1 27 0.08294
2 44 0.05851
3 60 0.05321
4 68 0.05167

The motion generator trained with uncorrected motions pro-
duces significantly more jerk related artifacts, which can be seen
in the %HJF metric. Qualitatively, these motions tended to include
physically impossible feats, such as changing the trajectory of the
character in the middle of a jump, which is likely due to the motion
generator being trained on kinematically generated motions with
no physics-based correction. Figure 8 compares the behavior of the
motion generator from different iterations on a challenging example.
The motion generator from the final iteration (Iteration 3) is able to
generate higher quality and more physically realistic motions that
successfully follow the target path across the environment.

7.3 Motion Tracker Performance
To evaluate the performance of the tracking controllers from dif-
ferent PARC iterations, we assess their success rates and average
joint errors when tracking the test motions generated by their cor-
responding motion generator. The success rate is the percentage
of episodes where the motion tracking controller is able to reach
the final frame of motion when starting from the first frame. The
average joint error is the average distance between the joints of the
simulated character and the corresponding joints in the reference
motion, and is computed using the average of 2048 episodes with
random initial frames for each motion. We report these metrics
in Table 2. The generated motions come from the previous experi-
ment on motion generator performance, except we use the selection
heuristic (Appendix E) to first select the best motion generated for
each test terrain. Therefore, the motion tracking controllers are
tested with 100 generated target motions.

7.4 Blended Denoising
To demonstrate the importance of the blended denoising as de-
scribed in Section 5.3, we experimented with different values for 𝑠
in the blended denoising update in Equation 5. To do this, we used
the iteration 4 motion generator to generate 3200 test motions on
our test terrain set. Lower values of the blending coefficient tend to
produce smoother motions as indicated by the percentage of high

Fig. 8. Motions generated on a test terrain for different iterations of PARC.
Each motion was generated using a batch of 32 for up to 15 seconds of
motion time and then automatically selected based on a heuristic incor-
porating terrain penetration, contact loss, and incompletion penalty. (Left)
The iteration 1 motion generator is only trained on the initial dataset, and
struggles to navigate across complex terrain. The character was only able
to get off the cliff within 15 seconds. (Middle) The motion produced by a
motion generator trained on uncorrected generated data from the iteration 1
motion generator. It exhibits physically implausible artifacts such as chang-
ing directions while flying through the air. (Right) The motion generated
by the iteration 3 generator shows the character utilizing contacts with the
terrain to navigate to the end of the path.
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Fig. 9. Plots showing the measured quantitative results of generated mo-
tions from the kinematic motion generator across different PARC iterations,
including an iteration with no physics-based motion correction (labeled
"NC"). Each metric reports the mean calculated over 3200 motions that
were generated across 100 different test terrains for each motion generator.
Without physics-based correction, the models generate motions that are
much less physically realistic.

jerk frames metric, but perform much worse in terms of terrain
penetration and terrain contact losses, as seen in Table 3.

Table 3. Quantitative results of our 4th iteration motion generator using
different blending coefficients 𝑠 . These metrics measure various aspects of
motion quality, and include FWD (final waypoint distance), TPL (terrain
penetration loss), TCL (terrain contact loss), and %HJF (percentage of high
jerk frames). The motions with the best quality have a balance between
terrain compliance (low FWD, TPL, TCL) and temporal continuity (low
%HJF). We used 𝑠 = 0.65 for automatically augmenting the dataset through
PARC, and 𝑠 = 0.5 for generating long horizon motions on complex terrain
using the final motion generator.

Blending Coefficient FWD ↓ TPL ↓ TCL ↓ %HJF ↓
0 0.908 40796 185.3 1.479

0.25 0.776 7411 44.93 1.113
0.5 0.571 4872 32.58 1.017
0.65 0.596 179.6 9.763 2.730
0.75 0.574 132.2 7.718 8.434
1 0.537 129.8 6.751 54.82

8 DISCUSSION AND FUTURE WORK
In this work, we introduced PARC, a data-augmentation framework
for training versatile physics-based terrain traversal controllers
starting with only a small motion dataset. PARC enhances training
by jointly optimizing a motion generation model and a physics-
based motion tracking controller, with the two models generating
data for each other in a synergistic process. Once trained, the system
allows simulated characters to navigate complex environments with
agility, using enhanced motion generation and tracking from this
iterative co-training approach.

PARC leverages the motion generation model and motion track-
ing controller to progressively expand the capabilities in the dataset,
while mitigating physical artifacts by leveraging a physics simula-
tion. However, PARC does not fully eliminate the risk of the model
developing unnatural behaviors. Exploring more sophisticated tech-
niques to identify and filter out unnatural movements can poten-
tially improve the realism of the synthesized motions. Furthermore,
our models are trained using procedurally generated terrain that
lack the diversity and complexity of real world environments. En-
hancing our framework to accommodate more complex and realistic
scenes will enable the models to synthesize behaviors better suited
for interactions with more life-like environments. Finally, our mo-
tion generator is not fast enough for real-time closed-loop planning,
which is a necessary condition for video games and robotics.
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Fig. 10. (Top) An example of a terrain used in our experiments, as well
as a character standing on the terrain. The character’s local heightmap is
visualized as red points. (Bottom left) The global heightmap of the terrain.
(Bottom right) The local heightmap h that is input to the motion generator.

A TERRAIN
Our goal is to design a physics-based character controller capable
of traversing diverse and complex terrain. This is however a very
challenging task, and providing sufficient observations of the terrain
to our character controller can be very memory intensive. Therefore,
we apply some constraints to the terrain in PARC to simplify the
task while still being able to achieve impressive results.

A.1 Terrain Representation
Our terrains are represented as 2.5D grids. Each grid index 𝑖, 𝑗 corre-
sponds to a box centered at a terrain point (𝑥0+𝑖Δ𝑥,𝑦0+ 𝑗Δ𝑦), where
(𝑥0, 𝑦0) represent the minimum box center coordinates, and Δ𝑥,Δ𝑦
denote the box dimensions. In particular, we use Δ𝑥 = Δ𝑦 = 0.4m.
The top surface of the box is located at h(𝑖, 𝑗) meters, while the
bottom surface effectively extends to −∞ since our terrains are 2.5D.
An example of a terrain is shown in Figure 10.

A.2 Terrain Generation
A.2.1 Random Boxes. Given a terrain grid of size NxM, the Random
Boxes method sequentially generates B boxes with random centers,
widths, lengths, and heights. For generating new terrains in iteration
1 and 2 of PARC, we apply the Random Boxes method to a flat 16x16
grid, with box widths and lengths within 5-10 grid cells, and box
heights within -2m to 2m. To simplify the terrain and make it easier
to generate motions on, we ensure there are no thin 1 block gaps
or walls. We do this by using a sliding 2x2 window with a stride

of 2 to flatten grid cells within the window. The flattening is done
by setting grid cells within a window to the maximum of height
within the window. An example of the Random Boxes method for
generating a new terrain can be seen in Figure 11.

A.2.2 Random Walk Terrain Generation Algorithm. The random
walk terrain generation algorithm is used to generate our test ter-
rains. We do this to better measure the performance of our motion
generator and motion tracker on terrains generated by algorithms
different from the generation algorithms used for training. This
algorithm generates paths with random walks on a flat input ter-
rain. The height of a path is randomly determined. For our 100
randomly generated test terrains, we initialized 32x32 flat terrains,
then generated 10 random walk paths with random heights.

A.2.3 Random Terrain Slices. Given a large terrain, we can ran-
domly select small slices of the terrain to run our path planner and
motion generator on. We use a 100x100 manually designed terrain,
shown in Figure 12, and select random 16x16 slices to generate new
motions on.

A.3 Terrain Augmentation
Given a motion sequence and its associated terrain, we can alter
the terrain without interfering with the motion, augmenting our
dataset with more possible terrain observations. We use a simple a
method by placing randomly rotated boxes on the terrain. In order
for these boxes to make physical sense with the motion, we use a
non-interfering augmented heightmap condition. Given the original
motion sequence, it is possible to calculate upper and lower height
bounds for each grid cell of the terrain heightmap such that the
terrain does not intersect with any frame of the motion sequence.
Then, after augmenting the terrain with randomly placed boxes,
we clamp the terrain heights to be within the precomputed bounds.
When augmenting local terrain heightmaps for training the motion
generator, we apply an approximate non-interfering augmentend
heightmap condition by assuming the local heightmap corresponds
to a terrain geometry. An example of what these non-interfering
terrain augmentations look like on a motion clip can be seen in
Figure 13.

B PATH PLANNING
We use a custom A* [Hart et al. 1968] algorithm to search for suitable
paths between start and end points on terrains. In order to apply A*
to our task, we need to define the weighted graph using the terrain
grid. We also need to define a cost function for traversing the edges
of the graph.

B.1 Navigation Graph
The graph for A* search is constructed as follows:
• Each cell has a directed edge connecting it to it’s adjacent
cells that are within an allowable height difference. We set
the maximum difference to be 2.1 meters, which is slightly
higher than the maximum height differences in the original
dataset.
• To enable jumping over gaps, for each node we search for
nodes within a certain jump radius and within a min and max
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Fig. 11. An illustration of our Random Boxes terrain generation method. From left to right: we begin with a single randomly generated box on a flat terrain.
Next, we show terrains with five and ten randomly generated boxes, respectively, where each new box is added cumulatively. In the final step, we apply a
sliding 2×2 max-pooling operation to the terrain heightmap, which removes narrow corridors and small platforms—producing smoother, more navigable
terrain for the motion generator.

Fig. 12. A 100x100 manually designed terrain used to help generate motions
for the third iteration of PARC.

jump height for each cell. If a node that satisfies the jump
conditions exist, we add a directed jump edge.
• We also make sure not to add jump edges that intersect with
walls by computing line box intersections for each potential
jump edge.

A visualization of a terrain and it’s navigation graph can be seen
in Figure 14. A clear example of how jump edges interact with walls
can be seen in Figure 15.

B.2 Cost
The cost to move along an edge is a function of the horizontal and
vertical distance between the source node and potential target node.

Fig. 13. (Top) A running and jumping motion from the dataset as well as
its associated terrain. (Bottom) The terrain augmented motion, where the
terrain does not interfere with the original motion trajectory.

The horizontal and vertical distances can be weighted differently.
In order to allow for more diversity in the generated paths, we also
add a stochastic value to the cost function. In total, the cost function
𝑔 to move between the current node x1 = (𝑥1, 𝑦1, 𝑧1) and a potential
next node x2 = (𝑥2, 𝑦2, 𝑧2) is:

𝑔(x1, x2) = 𝑤𝑥𝑦 ((𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2) +𝑤𝑧 (𝑧1 − 𝑧2)2 + 𝑋, (6)

where𝑋 ∼ 𝑈 (𝑐min, 𝑐max) is a random variable to add stochasticity
to the cost function. In our implementation, 𝑤𝑥𝑦 = 1, 𝑤𝑧 = 0.15,
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Fig. 14. (Left) An example terrain heightmap grid. (Middle) The terrain’s 3D visualization. (Right) The terrain’s navigation graph, which is used for A* path
planning.

Fig. 15. A visualization of the navigation graph with jump edges. (LEFT) We connect edges between cliff nodes within a jump radius, which are determined by
having adjacent nodes that are at a much lower height. This creates connections in the graph that allows the path planner to jump across platforms. (RIGHT)
Our navigation graph does not allow jump edges when a wall is interfering with the jump trajectory.

𝑐min = 0, 𝑐max = 0.5. The reason we use a higher horizontal distance
weight is to prioritize short horizontal paths, therefore encouraging
our path planner to make use of vertical terrain traversal skills such
as climbing.

B.3 Path Generation on New Terrains
To generate a path for a potential new motion, we select a start and
end node near the edges of randomly generated terrains and then
run our custom A* algorithm. An example of a generated path on a
terrain can be shown in Figure 16.

C HEURISTIC LOSSES
We approximate geometric losses by computing signed distance
functions between points sampled on the surface of the character
and the terrain.

C.1 Approximate Distance Fields
Due to the way our terrain is constructed, it can be represented as a
signed distance field. Each cell (𝑖, 𝑗) can be represented with a box
centered at (𝑥,𝑦) = (𝑥0 + 𝑖Δ𝑥,𝑦0 + 𝑗Δ𝑦) and with a top surface at
h(𝑖, 𝑗). We call the signed distance function to the terrain sdTerrain,
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Fig. 16. Examples of paths generated by our custom A* path planner.

which consists of the union of sdBox [Quilez [n. d.]] for each box in
the terrain.
We approximate distance computations between the character

body and terrain by using points sampled on the surface of the
character, and then use sdTerrain to get the signed distances between
the surface sampled points and the terrain.

C.2 Terrain Penetration Loss
Let p𝑖 denote the 𝑖𝑡ℎ point sampled on the body of the character.
Then the terrain penetration loss is formally:

Lpen =

𝑁points∑︁
𝑖=1
−min(sdTerrain(p𝑖 ), 0) (7)

A visualization of the signed distances sdTerrain(p𝑖 ) on the points
sampled on the character’s body surface can be seen in Figure 17.

C.3 Terrain Contact Loss
We use the contact labels to determine when a body part is supposed
to be in contact with the terrain. If a body is supposed to be in contact,
then the distance between at least one of the sampled points on the
body part and the terrain should be 0. Let 𝑃 (𝑏) denote the set of
points sampled on the surface of the 𝑏𝑡ℎ body part. Let c𝑏 denote
the binary contact label for the 𝑏𝑡ℎ body part. Then the contact loss
for one motion frame is:

Lcontact =

𝑁joints∑︁
𝑏=1

c𝑏minp∈𝑃 (𝑏 ) |sdTerrain(p) | (8)

C.4 Jerk Loss
We compute the third derivative of joint position, which is joint
jerk, using finite differences. We then add a penalty when a frame
has a jerk magnitude greater than a specified maximum value. Let
p𝑏 denote the position of the 𝑏𝑡ℎ joint, and jerkmax denote the max
jerk we want to allow, then the jerk loss is:

Ljerk =

𝑁joints∑︁
𝑏=1

max( |p̈𝑏 | − jerkmax, 0) (9)

Fig. 17. Visualizations of the approximate terrain penetration distances
using points sampled on the surface of the character. The points are colored
with a viridis color map, where darker represents more penetration.

D DIFFUSION MODEL DETAILS
In PARC, we use a diffusion model to represent the motion generator.
However, we believe this design decision is not crucial for PARC, and
we believe other models could work just as well. The general recipe
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Fig. 18. A diagram detailing a general recipe for training motion generators
suitable for PARC.

for training kinematic motion generators for PARC is to sample
motion sequences and their associated terrains from a dataset, and
then use a reconstruction loss to predict the future frames given the
past frames and terrain as contexts. Figure 18 shows this general
recipe for training motion generators. In this section, we will go into
more details about our particular diffusion model implementation
for the motion generator.

D.1 Diffusion Model Loss
The loss used for training the diffusion model is Eq 4. However,
this loss would compute arithmetic distances between the rotations,
which is not a valid metric for rotation differences. Instead, we
split the reconstruction loss into positional p = {proot, p1:𝐽 }1:𝑁

and rotational q = {qroot, q1:𝐽 }1:𝑁 components to compute the
reconstruction loss appropriately, where 𝑁 is the number of motion
frames and 𝐽 is the number of joints. We also extract the contact
label component c = {c1:𝐽 }1:𝑁 . We denote p̂0, q̂0, and ĉ0 as the
predicted positional component, rotational component, and contact
labels extracted from 𝐺 (𝑘, x𝑘 , C) = x̂0, respectively. Thus, the new
reconstruction loss is:

Lrec (𝐺) = Ex0,C∼𝐷E𝑘∼𝑝 (𝑘 )Ex𝑘∼𝑞 (x𝑘 |x0 )
[
| |p0 − p̂0 | |2 (10)

+||q0 ⊖ q̂0 | |2 + ||c0 − ĉ0 | |2
]

We also include additional geometric losses. These losses are
the velocity loss, joint position consistency loss, and terrain col-
lision loss. The positional velocities ¤p are calculated using finite
differences on the positional components of the motion frames. The
angular velocities ¤q are calculated by first calculating quaternion
finite differences, then converting them to exponential map form.

Lvelocity (𝐺) = Ex0,C∼𝐷E𝑘∼𝑝 (𝑘 )Ex𝑘∼𝑞 (x𝑘 |x0 )
[
| | ¤p0 − ¤̂p0 | |2 (11)

+|| ¤q0 − ¤̂q0 | |2
]

The joint position consistency loss intends to connect the predicted
joint positions and the joint positions computed using a forward
kinematics function denoted as 𝐹𝐾 (·) on root position, root rotation,
and joint rotations extracted from x̂0.

Ljoint (𝐺) = Ex0,C∼𝐷E𝑘∼𝑝 (𝑘 )Ex𝑘∼𝑞 (x𝑘 |x0 )
[
| |p̂0 − FK(x̂0) | |2

]
(12)

Fig. 19. An overview of our kinematic motion generation pipeline. PARC’s
motion generation requires a terrain generation module, a path planning
module, a trained motion generation model, and a kinematic motion correc-
tion module.

Finally, we use an approximate terrain penetration loss Lpen, de-
tailed in Eq 7.

D.2 DDIM Sampling
When using a diffusion model that predicts the clean sample, we
need to use a modified DDIM equation. Given a DDIM stride 𝑑 and
an initial noise 𝑥𝐾 ∼ N(0, I), we can iteratively apply the following
equation until we achieve the final predicted clean sample x0.

x𝑘−𝑑 =

(√︁
𝛼𝑘−𝑑 −

√
𝛼𝑘
√

1 − 𝛼𝑘−𝑑√
1 − 𝛼𝑘

)
x̂0 +

√
1 − 𝛼𝑘−𝑑√

1 − 𝛼𝑘
x𝑘 (13)

E KINEMATIC MOTION CORRECTION
We use a collection of kinematic motion correction techniques to
remove artifacts and enhance the quality of our generated motions,
alleviating the difficulty of tracking using our motion tracking con-
troller. These motion correction techniques are applied at the end of
our kinematic motion generation pipeline, which Figure 19 provides
an overview of.

E.1 Selection Heuristic
To help filter the outputs of our motion generator, we generate
a batch of motions in parallel, then select the best motion based
on a selection heuristic. The selection heuristic is combination of
the terrain penetration loss in Equation 7, terrain contact loss in
Equation 8, and path incompletion penalty. The path incompletion
penalty is added to the loss if a generated motion is unable to reach
the end of the path it is conditioned on after an amount of time
decided by the user. The full selection heuristic that we used is:

Lmotion = Lpen + Lcontact + 1000(reached end of path) (14)

E.2 Kinematic Motion Optimization
Motions produced by the motion generator can have various arti-
facts that make it particularly challenging to track in simulation. To
address these, we optimize the motion sequence using a heuristic
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Fig. 20. An overview of the reinforcement learning training method for
the physics-based motion tracking controller, as well as the method for
recording physics-based motions using the trained motion tracker.

loss function designed to remove unnatural motion artifacts. The
loss function consists of:

• A regularization loss Lreg to prevent the optimized motion
sequence from changing its root position, root rotation, and
joint rotations too much from the original motion sequence.
This simply computes the difference between the current
optimized variables and the original source variables.
• A terrain penetration loss that penalizes body-terrain pene-
tration, as described in Equation 7.
• A terrain contact loss that penalizes missed body-terrain con-
tact based on each motion frame’s contact labels, as described
in Equation 8.
• A jerk loss that penalizes body joint jerk greater than 1000𝑚/𝑠3,
as described in Equation 9.

The full loss that we optimize for generated motions before the
motion tracking stage is:

L = 𝑤regLreg +𝑤penLpen +𝑤contactLcontact +𝑤jerkLjerk . (15)

The weights we use are 𝑤reg = 1, 𝑤pen = 1000, 𝑤contact = 1000,
and𝑤jerk = 1000. We optimize using Adam [Kingma and Ba 2014]
with a step size of 0.001 and 3000 iterations. The full implementation
details are available at https://github.com/mshoe/PARC.

F MOTION TRACKING DETAILS
An overview of training the motion tracker and recording physics-
based motions can be seen in Figure 20. The details of the rein-
forcement learning rewards and other motion tracking training
techniques will be described in this section.

F.1 Rewards
We use a distance of 0.7m for the pose termination criteria of each
joint, except for the foot joints which we do not use a pose termi-
nation criteria on. This is to give the motion tracking agent more
freedom in finding physically plausible solutions for tracking the
kinematically generated motions.

The root position, root velocity, joint rotation, joint velocity, and
key body position rewards are similar to [Peng et al. 2018]. Given
the character and the reference motion’s joint rotations at time 𝑡 ,
q𝑗𝑡 and q̂𝑗𝑡 , the joint rotation or "pose" reward is:

𝑟
pose
𝑡 = exp

−0.25
∑︁
𝑗

𝑤 𝑗 | |q̂𝑗𝑡 ⊖ q𝑗𝑡 | |
2
 (16)

where 𝑤 𝑗 is a tunable weight for the j𝑡ℎ joint. The exact weights
for character can be found in our publicly available code at https:
//github.com/mshoe/PARC. Given the character and reference mo-
tion’s local joint velocities, ¤q𝑗𝑡 and ¤̂q𝑗𝑡 , the joint velocity reward
is:

𝑟
pose velocity
𝑡 = exp

−0.01
∑︁
𝑗

𝑤 𝑗 | | ¤̂q𝑗𝑡 − ¤q
𝑗
𝑡 | |

2
 (17)

Given the character and reference motion’s root position and root
rotations, proot𝑡 , qroot𝑡 and p̂root𝑡 , q̂root𝑡 , the root position reward is:

𝑟 root𝑡 = exp
[
−5

(
| |p̂root𝑡 − proot𝑡 | |2 + 0.1| |q̂root𝑡 ⊖ qroot𝑡 | |2

)]
(18)

Given the character and reference motion’s root velocity and root
angular velocity, ¤proot𝑡 , ¤qroot𝑡 and ¤̂proot𝑡 , ¤̂qroot𝑡 , the root velocity reward
is:

𝑟
root velocity
𝑡 = exp

[
−

(
| | ¤̂proot𝑡 − ¤proot𝑡 | |2 + 0.1| | ¤̂qroot𝑡 − ¤qroot𝑡 | |2

)]
(19)

Given the character and reference motion’s key body positions, p𝑖𝑡
and p̂𝑖𝑡 , where 𝑖 denotes the key body index, the key body reward is:

𝑟
key
𝑡 = exp

[
−10

∑︁
𝑖

| |p̂𝑖𝑡 − p𝑖𝑡 | |2
]

(20)

The key bodies in our experiments are the hands and feet of the
humanoid character.

The contact label reward is both a reward and a penalty. It penal-
izes the agent when it’s contact labels do not match the reference
motion, but also rewards the agent when it does. This is to prevent
the agent from learning motions that use unnatural contacts. Given
reference contact labels ĉ𝑡 and simulator computed contact labels
for the character c𝑡 , the contact reward is:

𝑟 contact𝑡 =
1

𝑁joints

∑︁
𝑗

[
ĉ𝑗𝑡 c

𝑗
𝑡 − (1 − ĉ

𝑗
𝑡 )c

𝑗
𝑡

]
(21)

The full tracking reward which is a weighted sum of the previ-
ously described rewards is:

𝑟𝑡 = 0.5𝑟pose𝑡 + 0.1𝑟pose velocity𝑡 + 0.15𝑟 root𝑡 + 0.1𝑟 root velocity𝑡 (22)

+0.15𝑟key𝑡 + 𝑟 contact𝑡

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.

https://github.com/mshoe/PARC
https://github.com/mshoe/PARC
https://github.com/mshoe/PARC


18 • Michael Xu, Yi Shi, KangKang Yin, and Xue Bin Peng

Fig. 21. Our visualization, motion editing, terrain editing, and motion gen-
eration tool.

F.2 Prioritized State Initialization
Training a tracking controller on a large motion dataset, particularly
one comprising numerous contact-rich parkour motions, presents a
significant multi-task learning challenge for reinforcement learning
(RL) agents. Sampling motion clips uniformly across the dataset
often results in an imbalance, where challenging motion clips re-
ceive disproportionately fewer samples. This issue is exacerbated by
the use of early termination, as difficult motions that consistently

fail are further deprived of sampling opportunities, while easier
motions with lower failure rates consume a disproportionate share
of resources. In our framework, we track the failure rates of individ-
ual motion clips and incorporate these rates as sampling weights
within a multinomial distribution. The sampling weights are used
to sample a reference motion whenever an environment is reset.
A motion clip is considered a failure if the agent fails to meet the
pose termination criterion before completing the clip. By leveraging
failure rates as sampling weights, PARC ensures that both challeng-
ing and unlearned motions receive proportionally more samples
compared to easier or already mastered motions. To mitigate the
risk of catastrophic forgetting, a minimum sampling weight of 0.01
is enforced for all motion clips, ensuring every motion continues
to be sampled throughout training. Prior work uses variations of
this technique known as prioritized state initialization [Park et al.
2019b; Tessler et al. 2024; Won and Lee 2019; Xie et al. 2022].

G VISUALIZATION AND EDITING TOOL
In order to help both artists and researchers to use our work, we
wrote a visualization tool using Polyscope [Sharp et al. 2019] with
motion and terrain editing functionalities. Our tool also allows users
to draw their own paths or use our A* path planner, then use our
motion generator to autoregressively generate a motion along the
path. An image of our program can be seen in Figure 21.
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