
PADL: Language-Directed Physics-Based Character Control
Jordan Juravsky

NVIDIA
University of Waterloo

Canada
jjuravsky@nvidia.com

Yunrong Guo
NVIDIA
Canada

kellyg@nvidia.com

Sanja Fidler
NVIDIA

University of Toronto
Canada

sfidler@nvidia.com

Xue Bin Peng
NVIDIA

Simon Fraser University
Canada

japeng@nvidia.com

(a) Skill command: "jump and swing sword down". (b) Skill command: "shield charge forward".

Figure 1: Our framework allows users to direct the behaviors of physically simulated characters using natural language
commands. Left: Humanoid character performing a jump attack. Right: Character knocking over a target object by performing
a shield charge.

ABSTRACT
Developing systems that can synthesize natural and life-like mo-
tions for simulated characters has long been a focus for computer an-
imation. But in order for these systems to be useful for downstream
applications, they need not only produce high-quality motions, but
must also provide an accessible and versatile interface through
which users can direct a character’s behaviors. Natural language
provides a simple-to-use and expressive medium for specifying a
user’s intent. Recent breakthroughs in natural language processing
(NLP) have demonstrated effective use of language-based interfaces
for applications such as image generation and program synthesis.
In this work, we present PADL, which leverages recent innovations
in NLP in order to take steps towards developing language-directed
controllers for physics-based character animation. PADL allows
users to issue natural language commands for specifying both high-
level tasks and low-level skills that a character should perform. We
present an adversarial imitation learning approach for training poli-
cies to map high-level language commands to low-level controls
that enable a character to perform the desired task and skill specified
by a user’s commands. Furthermore, we propose a multi-task ag-
gregation method that leverages a language-based multiple-choice
question-answering approach to determine high-level task objec-
tives from language commands. We show that our framework can
be applied to effectively direct a simulated humanoid character to
perform a diverse array of complex motor skills.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9470-3/22/12. . . $15.00
https://doi.org/10.1145/3550469.3555391

CCS CONCEPTS
• Computing methodologies→ Procedural animation; Adver-
sarial learning.

KEYWORDS
character animation, language commands, reinforcement learning,
adversarial imitation learning
ACM Reference Format:
Jordan Juravsky, Yunrong Guo, Sanja Fidler, and Xue Bin Peng. 2022. PADL:
Language-Directed Physics-Based Character Control. In SIGGRAPH Asia
2022 Conference Papers (SA ’22 Conference Papers), December 6–9, 2022, Daegu,
Republic of Korea. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3550469.3555391

1 INTRODUCTION
Developing physically simulated characters that are capable of pro-
ducing complex and life-like behaviors has been one of the central
challenges in computer animation. Efforts in this domain has led to
systems that can produce high-quality motions for a wide range of
skills [Clegg et al. 2018; de Lasa et al. 2010; Hodgins et al. 1995; Lee
et al. 2010a; Liu and Hodgins 2018; Liu et al. 2016; Mordatch et al.
2012; Peng et al. 2018a; Tan et al. 2014; Wang et al. 2009]. However,
in order for these systems to be useful for downstream applications,
the control models need not only produce high quality motions,
but also provide users with an accessible and versatile interface
through which to direct a character’s behaviors. This interface is
commonly instantiated through compact control abstractions, such
as joystick controls or target way points. These control abstractions
allow users to easily direct a character’s behavior via high-level
commands, but they can greatly restrict the variety and granular-
ity of the behaviors that a user can actively control. Alternatively,
motion tracking models can provide a versatile interface that en-
ables fine-grain control over a character’s movements by directly
specifying target motion trajectories. However, authoring motion
trajectories can be a labour-intensive process, requiring significant
domain expertise or specialized equipment (e.g. motion capture).

https://orcid.org/0000-0003-2080-7074
https://orcid.org/0000-0002-3677-5655
https://doi.org/10.1145/3550469.3555391
https://doi.org/10.1145/3550469.3555391
https://doi.org/10.1145/3550469.3555391

SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea Jordan Juravsky, Yunrong Guo, Sanja Fidler, and Xue Bin Peng

An ideal animation system should provide an accessible interface
that allows users to easily specify desired behaviors for a character,
while also being sufficiently versatile to enable control over a rich
corpus of skills. Natural language offers a promising medium that is
both accessible and versatile. The recent development of large and
expressive language models has provided powerful tools for inte-
grating natural language interfaces for a wide range of downstream
applications [Brown et al. 2020; Devlin et al. 2018; Radford et al.
2021], such as generating functional code and realistic images from
natural language descriptions [Chen et al. 2021; Ramesh et al. 2022;
Tan et al. 2018]. In this work, we aim to leverage these techniques
from NLP to take steps towards developing a language-directed
system for physics-based character animation.

The central contribution of this work is a system for language-
directed physics-based character animation, which enables users
to direct the behaviors of a physically simulated character using
natural language commands. Given a dataset of motion clips and
captions, which describe the behaviors depicted in each clip, our
system trains control policies to map from high-level language
commands to low-level motor commands that enable a character
to reproduce the corresponding skills. We present an adversarial
imitation learning approach that allows a policy to reproduce a
diverse array of skills, while also learning to ground each skill in
language commands. Our policies can also be trained to perform
additional auxiliary tasks. We present a language-based multi-task
aggregation model, which selects between a collection of task-
specific policies according to a given command, thereby allowing
users to easily direct a character to perform various high-level
tasks via natural language. We present one of the first systems
that can effectively leverage language commands to direct full-
body physically simulated character to perform a diverse array
of complex motor skills. The code for this work is available at
https://github.com/nv-tlabs/PADL.

2 RELATEDWORK
Synthesizing natural and intelligent behaviors for simulated charac-
ters has been a core subject of interest in computer animation, with
a large body of work focused on building kinematic and physics-
based control models that can generate life-like motions [Clegg
et al. 2018; da Silva et al. 2008; Hodgins et al. 1995; Holden et al.
2016; Lee et al. 2010a; Liu and Hodgins 2018; Tan et al. 2014; Wang
et al. 2009, 2012]. While a great deal of emphasis has been placed
on motion quality, considerably less attention has been devoted on
the directability of the resulting models at run-time. Directability is
often incorporated into these models via control abstractions that
allow users to direct a character’s behaviors through high-level com-
mands. These abstractions tend to introduce a trade-off between
accessibility and versatility. Simple control abstractions, such as joy-
stick commands or target waypoints, [Agrawal and van de Panne
2016; Coros et al. 2009; Holden et al. 2017; Lee et al. 2021b,a, 2010b;
Ling et al. 2020; Peng et al. 2018a, 2022, 2021; Starke et al. 2019;
Treuille et al. 2007; Zhang et al. 2020], provide an accessible in-
terface that can be easily adopted by users. But these abstractions
can also limit the versatility of the behaviors that can be actively
controlled by a user. Alternatively, general motion tracking models
can provide a versatile interface, which allows for fine-grain control

over a character’s movements through target motion trajectories
[Bergamin et al. 2019; Park et al. 2019; Pollard et al. 2002; Wang
et al. 2020; Won et al. 2020; Yamane et al. 2010]. These target tra-
jectories specify desired poses for the character to reach at every
timesteps, which in principle can direct the character to perform
any feasible motion. However, this versatility often comes at the
cost of accessibility, since authoring target motion trajectories can
be as tedious and labour intensive as manual keyframe animation.
Motion capture can be a more expeditious approach for generating
target trajectories for motion-tracking models [Peng et al. 2018b;
Wang et al. 2020; Yu et al. 2021; Yuan et al. 2021], but tends to require
specialized equipment and may limit the reproducible behaviors to
those that can be physically performed by the user. In this work,
we aim to leverage natural language to develop an accessible and
versatile control interface for physics-based character animation.

Natural Language Processing: Language models trained on in-
creasingly large datasets have been shown to develop powerful
representations for text data [Devlin et al. 2018; Liu et al. 2019;
Raffel et al. 2019], which can be used for a wide range of down-
stream applications. One such example is text-guided synthesis,
where a user’s prompt, expressed in natural language, can be used
to direct models to produce different types of content. Large au-
toregressive models are able to generate coherent text completions
given a user’s starter prompt [Brown et al. 2020]. These models
lead to the popularization of “prompt engineering", where the aim
is to construct optimal prompt templates that elicit the desired be-
haviors from a language model. Such prompt-based systems, often
combined with filtering or other post-processing techniques, have
been successfully used to solve grade-school math problems and
competitive programming challenges [Cobbe et al. 2021; Li et al.
2022]. Text-guided synthesis can also be applied across different
modalities. Here, the language model does not directly generate
the desired content, instead it provides a semantically meaningful
encoding for a user’s language prompt, which can then be used
by a separately trained decoder to generate content in a different
modality. Nichol et al. [2021] and Ramesh et al. [2022] successfully
used this approach to generate photo-realistic images from natu-
ral language, leveraging the text encoder from CLIP [Radford et al.
2021]. In this work, we aim to leverage powerful language models to
develop language-directed controllers for physics-based character
animation.

Language-Directed Animation: Synthesizing motion from lan-
guage is one of the core challenges of audio-driven facial animation,
where the goal is to generate facial motions for a given utterance.
These models typically take advantage of the temporal correspon-
dence between units of speech (phonemes) and facial articulations
(visemes) in order to synthesize plausible facial animations for a
particular utterance [Brand 1999; Deena and Galata 2009; Hong
et al. 2002; Karras et al. 2017; Pelachaud et al. 1996]. A similar tem-
poral correspondence can also be leveraged to generate full-body
gestures from speech [Ahuja and Morency 2019; Alexanderson et al.
2020; Levine et al. 2009]. While these techniques can be highly ef-
fective for generating realistic motions from speech, they are not
directly applicable in more general settings where there is no clear
temporal correspondence between language and motion. For ex-
ample, a high-level command such as “knock over the red block”

https://github.com/nv-tlabs/PADL

PADL: Language-Directed Physics-Based Character Control SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea

implicitly encodes a sequence of skills that a character should per-
form. Sequence-to-sequence models have been proposed to map
high-level language descriptions to motion trajectories [Lin et al.
2018; Plappert et al. 2017]. Ahuja and Morency [2019] and Tevet
et al. [2022] proposed autoencoder frameworks that learns a joint
embedding of language and motion, which can be used to gen-
erate full-body motions from language descriptions. While these
techniques have demonstrated promising results, they have been
primarily focused on developing kinematic motion models. In this
work, we aim to develop a language-directed model for physics-
based character animation, which maps high-level language com-
mands to low-level controls that enable a character to perform the
desired behaviors.

3 BACKGROUND
Our characters are trained using a goal-conditioned reinforcement
learning framework, where an agent interacts with an environment
according to a control policy 𝜋 in order to fulfill a given goal g ∈
G, drawn from a goal distribution g ∼ 𝑝 (g). At each time step
𝑡 , the agent observes the state of the environment s𝑡 ∈ S, and
responds by applying an action a𝑡 ∈ A, sampled from the policy
a𝑡 ∼ 𝜋 (a𝑡 |s𝑡 , g). After applying the action a𝑡 , the environment
transitions to a new state s𝑡+1, and the agent receives a scalar
reward 𝑟𝑡 = 𝑟 (s𝑡 , a𝑡 , s𝑡+1, g) that reflects the desirability of the state
transition for the given goal g. The agent’s objective is to learn
policy 𝜋 that maximizes its expected discounted return 𝐽 (𝜋),

𝐽 (𝜋) = E𝑝 (g)E𝑝 (𝜏 |𝜋,g)

[
𝑇−1∑︁
𝑡=0

𝛾𝑡𝑟𝑡

]
, (1)

where 𝑝 (𝜏 |𝜋, g) = 𝑝 (s0)
∏𝑇−1

𝑡=0 𝑝 (s𝑡+1 |s𝑡 , a𝑡)𝜋 (a𝑡 |s𝑡 , g) denotes the
likelihood of a trajectory 𝜏 = (s0, a0, s1, ..., s𝑇) under a policy 𝜋

given a goal g, 𝑝 (s0) is the initial state distribution, and𝑝 (s𝑡+1 |s𝑡 , s𝑎)
represents the transition dynamics of the environment. 𝑇 is the
time horizon of a trajectory, and 𝛾 ∈ [0, 1] is a discount factor.

4 OVERVIEW
In this paper we introduce Physics-based Animation Directed with
Language (PADL; pronounced “paddle”), a system for developing
language-directed control models for physics-based character an-
imation. Our framework allows users to control the motion of a
character by specifying a task to complete, as well as a specific
skill to use while completing that task. Tasks represent high-level
objectives that the agent must accomplish, such as navigating to
a target location or interacting with a specific object. In addition
to specifying what task an agent must accomplish, it is important
for users to be able to control how the task is accomplished. For
example, given the task of navigating to a target location, an agent
can walk, run, or jump to the target. In our system, the desired
task and skill for the character are specified separately via natural
language in the form of a task command and a skill command.

Our framework consists of three stages, and a schematic overview
of the system is available in Figure 2. First, in the Skill Embedding
stage, a reference motion datasetM = {(m𝑖 , 𝑐𝑖)}, containing mo-
tion clipsm𝑖 annotated with natural language captions 𝑐𝑖 , is used to
learn a shared embedding spaceZ of motions and text. Eachmotion
clip𝑚𝑖 = {q̂𝑖𝑡 } is represented by a sequence of poses q̂𝑖𝑡 . A motion

Figure 2: The PADL framework consists of three stages. 1)
In the Skill Embedding stage, a dataset of motion clips and
corresponding text captions are used to learn a joint embed-
ding of motions and captions. 2) In the Policy Training stage,
the learned skill embedding is used to train a collection of
policies to perform various tasks, while imitating behaviors
in the dataset. 3) Finally, in the Multi-Task Aggregation stage,
policies trained for different tasks are combined into a multi-
task controller that can be directed to perform different tasks
and skills via language commands.

encoder 𝑧𝑖𝑚 = Enc𝑚 (m𝑖) and language encoder 𝑧𝑖
𝑙
= Enc𝑙 (𝑐𝑖) are

trained to map each motion and caption pair to similar embeddings
𝑧𝑖𝑚 ≈ 𝑧𝑖𝑙 . Next, in the Policy Training stage, this embedding is used
to train a collection of reinforcement learning policies, where each
policy 𝜋𝑖 (a𝑡 |s𝑡 , g, z) is trained to perform a particular task using
various skills z ∈ Z from the embedding. Once trained, the policy
can then be directed to execute a particular skill by conditioning
𝜋 on the embedding of a given language command 𝑧𝑙 = Enc𝑙 (𝑐).
Finally, in the Multi-Task Aggregation stage, the different policies
are integrated into a multi-task controller that can be directed using
language commands to perform a specific task using a desired skill.

5 SKILL EMBEDDING
In the Skill Embedding stage, our objective is to construct an em-
bedding space that aligns motions with their corresponding natural
language descriptions. To do this, we follow a similar procedure as
MotionCLIP [Tevet et al. 2022], where a transformer autoencoder is

SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea Jordan Juravsky, Yunrong Guo, Sanja Fidler, and Xue Bin Peng

trained to encodemotion sequences into a latent representation that
“aligns” with the language embedding from a pre-trained CLIP text
encoder [Radford et al. 2021]. Given a motion clip m̂ = (q̂1, ..., q̂𝑛)
and its caption 𝑐 , a motion encoder z = Enc𝑚 (m̂) maps the motion
to an embedding z. The embedding is normalized to lie on a unit
sphere | |z| | = 1. Following Tevet et al. [2022], Enc𝑚 (m) is mod-
eled by a bidirectional transformer [Devlin et al. 2018]. A motion
decoder is jointly trained with the encoder to produce a reconstruc-
tion sequence m = (q1, ..., q𝑛) to recover m̂ from z. The decoder is
also modelled as a birectional transformer m = Dec(z,U), which
decodes all frames of in parallel using a learned constant query
sequence U = (u1, ..., u𝑛), similar to the final layer of Carion et al.
[2020]. The autoencoder is trained with the loss:

Lauto = Lrecon + 0.1Lalign . (2)

The reconstruction loss Lrecon measures the error between the
reconstructed sequence and original motion:

Lrecon =
1
𝑛

𝑛∑︁
𝑡=1
| |q̂𝑡 − Dec (Enc𝑚 (m̂) ,U) | |22 . (3)

The alignment loss Lalign measures the cosine distance between a
motion embedding and the language embedding:

Lalign = 1 − 𝑑cos (Enc𝑚 (m̂) , Enc𝑙 (𝑐)) . (4)

The language encoder Enc𝑙 (m) is modeled using a pre-trained
CLIP text encoder with an added head of two fully-connected layers,
where only this output head is fine-tuned according to Eq. 4. To help
avoid overfitting, for every minibatch of motion sequences sampled
from the dataset we also extract a random subsequence from each
motion and add these slices to the batch that the model is trained
on. These subsequences only contribute to the reconstruction loss.

6 POLICY TRAINING
Once we have a joint embedding of motions and captions, we will
next use the embedding to train control policies that enable a physi-
cally simulated character to perform various high-level tasks while
using skills specified by language commands. At each timestep 𝑡 ,
the policy 𝜋 (a𝑡 |s𝑡 , g, z) receives as input the state of the character
s𝑡 , a task-specific goal g, and a skill latent z. The goal g specifies
high-level task objectives that the character should achieve, such as
moving to a target location or facing a desired direction. The skill
latent z specifies the skill that the character should use to achieve
the desired goal, such as walking vs running to a target location.
The latents are generated by encoding motion clips z = Enc𝑚 (m)
sampled from the datasetM. In order to train a policy to perform
a given task using a desired skill, we utilize a reward function
consisting of two components:

𝑟𝑡 = 𝑟 skill𝑡 + 𝜆task𝑟 task𝑡 , (5)
where 𝑟 skill𝑡 is a skill-reward, and 𝑟 task𝑡 is a task-reward with coeffi-
cient 𝜆task.

6.1 Skill Objective
To train the policy to perform the skill specified by a particular z𝑖 ,
we enforce that the policy’s distribution of state transitions (s, s′)

matches that of the corresponding motion clip m𝑖 . To accomplish
this, we train an adversarial discriminator 𝐷 (s, s′, z) on the joint
distribution of state transitions and skill encodings [Ho and Er-
mon 2016; Merel et al. 2017; Peng et al. 2021]. The discriminator
is trained to predict if a given state transition (s, s′) is from the
motion clip corresponding to z, or if the transition is from the sim-
ulated character or from a different motion clip in the dataset. The
discriminator is trained by minimizing the following loss:

L𝐷 = E𝑝M (m)

[
− E𝑝m (s,s′)

[
log(𝐷 (s, s′, z))

]
(6)

−𝑤𝐷 E𝑝𝜋 (s,s′ |z)
[
log(1 − 𝐷 (s, s′, z))

]
(7)

− (1 −𝑤𝐷) E𝑝M\m (s,s′)
[
log(1 − 𝐷 (s, s′, z))

]
(8)

+𝑤gp E𝑝m (s,s′)

[������∇𝜙𝐷 (𝜙, z)���𝜙=(s,s′) ������2]] . (9)

𝑝M (m) represents the likelihood of sampling a motion clipm from
a dataset M, and z = Enc𝑚 (m) is the encoding of the motion
clip. 𝑝m (s, s′) denotes the likelihood of observing a state transition
from a given motion clip, and 𝑝𝜋 (s, s′ |z) is the likelihood of ob-
serving a state transition from the policy 𝜋 when conditioned on z.
𝑝M\m (s, s′) represents the likelihood of observing a state transi-
tion by sampling random transitions from other motion clips in the
dataset, excluding m, and 𝑤𝐷 is a manually specified coefficient.
The final term in the loss is a gradient penalty with coefficient
𝑤gp [Peng et al. 2021], which improves stability of the adversarial
training process. The skill-reward is then given by:

𝑟 skill𝑡 = −log (1 − 𝐷 (s𝑡 , s𝑡+1, z)) . (10)

To direct the policy with a skill command 𝑐skill after it has been
trained, the model is provided with the encoding z = Enc𝑙 (𝑐skill).
By conditioning the discriminator on both state transitions and
latents, our method explicitly encourages the policy to imitate
every motion clip in the dataset, which can greatly reduce mode
collapse. We elaborate on this benefit and compare our approach
to related adversarial RL frameworks in Appendix D.

7 MULTI-TASK AGGREGATION
Each policy from the Policy Training stage is capable of performing
a variety of skills, but each is only able to perform a single high-level
task involving a single target object. We show that these individual
policies can be aggregated into a more flexible composite policy,
which allows users to direct the character to perform a variety
of different tasks in an environment containing multiple objects.
However, in our experiments, we found that attempting to use
the procedure in Section 6 to train a single multi-task policy to
perform all tasks leads to poor performance. Effectively training
multi-task policies remains a challenging and open problem in RL,
and prior systems have often taken a divide-and-conquer approach
for multi-task RL [Ghosh et al. 2018; Ruder 2017; Rusu et al. 2015].

To create a more flexible multi-task, multi-object controller, we
aggregate a collection of single-task policies together. At each
timestep, the user’s current task command is used to generate
prompts that are fed to a multiple-choice question-answering (QA)
model. The QA model identifies which task and environment object
are being referenced by the user. The single-task controller for the

PADL: Language-Directed Physics-Based Character Control SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea

identified task is then set as the active policy controlling the char-
acter, and the state of the identified object is passed to the selected
policy. An overview of this procedure is provided with pseudocode
in Algorithm 1 in the Appendix. Note that since the character is
being driven by a single policy from Section 6 at every timestep, the
aggregated controller can only follow one high-level task involving
a single object at a time. However, with this controller the user can
dynamically control which task and object are focused on using
natural language.

7.1 Multiple Choice Question Answering
An overview of the language-based selection model is shown in
Figure 3. The multiple-choice QA model is constructed using a
pre-trained BERT model fine-tuned on the SWAG dataset [Zellers
et al. 2018]. Each multiple-choice question is formulated as an ini-
tial prompt sentence (Sentence A) alongside 𝑛 candidate follow-up
sentences (Sentence B) [Devlin et al. 2018]. The model then outputs
scores for 𝑛 distinct sequences, where sequence 𝑖 is the concatena-
tion of the prompt sentence with the 𝑖-th candidate sentence. The
object corresponding to the candidate sentence with the highest
score is selected as the target object for the policy. A similar process
is used to identify the task from the user’s command.

For each task command provided by the user, the model is pro-
vided with two separate multiple-choice questions to identify the
relevant task and object, respectively. The first question identifies
the task, where eachmultiple choice option corresponds to a trained
policy. The inputs to the QA model follow a story-like format in
order to mimic the elements of the SWAG dataset that the model
was fine-tuned on. For example, if the task command is “knock over
the blue tower”, the candidate sequence for the strike policy is:
• "Bob wants to knock over the blue tower . This should be easy
for him since he possesses the ability to knock over a specified
object."

Similarly, the candidate sequence for the location policy is given
by:
• "Bob wants to knock over the blue tower . This should be easy
for him since he possesses the ability to navigate to a specified
destination."

The multiple-choice QA model will then predict which sequence of
sentences are most likely. Similarly, in the multiple-choice question
to extract the target object, each object is given a multiple choice
option describing the object’s appearance. The candidate sequence
for the green block is given by:
• "Bobwants to knock over the blue tower . He starts by turning
his attention to the green object nearby."

8 EXPERIMENTAL SETUP
Weevaluate the effectiveness of our framework by training language-
directed control policies for a 3D simulated humanoid character.
The character is equipped with a sword and shield, similar to the
one used by Peng et al. [2022], with 37 degrees-of-freedom, and
similar state and action representations. The dataset contains a
total of 131 individual clips, for a total of approximately 9 minutes
of motion data. Each clip is manually labeled with 1-4 captions that
describe the behavior of the character within a particular clip, for a

Figure 3: Overview of the language-based selection model
used to select a target object based on the user’s task com-
mand. The task command is used to generate a collection of
candidate sentences, each corresponding to a particular ob-
ject in the environment. A multiple-choice QA model is then
used to predict the most likely candidate sentence, based on
the task command. Themodel’s prediction is used to identify
the target object the user referenced.

total of 265 captions in the entire dataset. Fig. 4 illustrates examples
of motion clips in the dataset along with their respective captions.

8.1 Tasks
In addition to training policies to imitate skills from the dataset, each
policy is also trained to perform an additional high-level task. Here,
we provide an overview of the various tasks, and more detailed
descriptions are available in Appendix B.

(1) Facing: First, we have a simple facing task, where the objec-
tive is for the character to turn and face a target direction
d∗, encoded as a 2D vector on the horizontal plane. The goal
input g𝑡 = d̃∗𝑡 for the policy records the goal direction in the
character’s local coordinate frame.

(2) Location: Next, we have a target location task, where the
objective is for the character to navigate to a target loca-
tion x∗. The goal g𝑡 = x̃∗𝑡 records the target location in the
character’s local coordinate frame x̃∗𝑡 .

(3) Strike: Finally, we have a strike task, where the objective
is for the character to knock over a target object. The goal
g𝑡 = (x̃∗𝑡 , ¤̃x∗𝑡 , 𝑞∗𝑡 , ¤̃𝑞∗𝑡) records the target object’s position x̃∗𝑡 ,
rotation 𝑞∗𝑡 , linear velocity ¤̃x∗𝑡 , and angular velocity ¤̃𝑞∗𝑡 . All
features are expressed in the character’s local frame.

8.2 Training
All physics simulations are performed using Isaac Gym, a massively
parallel GPU-based physics simulator [Makoviychuk et al. 2021].
The simulation is performed at a frequency of 120Hz, while the
policies operate at a frequency of 30Hz. 4096 environments are
simulated in parallel on a single A100 GPU. A 128D latent space
is used for the skill embedding. The policy, value function, and
discriminator are modeled using separate multi-layer perceptions

SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea Jordan Juravsky, Yunrong Guo, Sanja Fidler, and Xue Bin Peng

(a) "sprint forwards while swinging arms".

(b) "left shield bash", "shield bash left", "shield bash to the left while standing still".

(c) "slash right", "right swing", "swing sword to the right", "stand still and slash to the right".

(d) task: Location. skill: "sprint forward while swinging arms". (e) task: Strike. skill: "shield bash to the right".

Figure 4: (a) – (c): Reference motion clips (left side) and their corresponding captions, along with motions produced by a
simulated character when directed to perform the reference skills through language commands (right side). More reference
motions and policy trajectories are shown in Fig. 7 in the Appendix. (d) – (e): Trained policies completing tasks with different
skills.

with ReLU units and hidden layers containing [1024, 1024, 512]
units. Each policy is trained using proximal policy optimization
with about 7 billion samples [Schulman et al. 2017], corresponding
to approximately 7 years of simulated time, which requires about
2.5 days of real-world time. Selecting a weight 𝜆task for the task
reward that effectively balances the task and skill reward can be
challenging, and may require task-specific tuning. We therefore
apply an adaptive method to dynamically adjust 𝜆task based on a
target task-reward value [Mentzer et al. 2021]. More details are
available in Appendix B.4.

9 RESULTS
Wefirst train policies without auxiliary tasks to evaluate themodel’s
ability to reproduce skills from a motion dataset. Examples of the
policy’s behaviors when given various skill commands are avail-
able in Fig. 4. The policy is able to follow a variety of language
commands, ranging from locomotion skills, such as walking and
running, to more athletic behaviors, such as sword swings and
shield bashes. Since the language encoder is built on a large CLIP
model [Radford et al. 2021], it exhibits some robustness to new
commands, which were not in the dataset. For example, the model
correctly performs a casual walking motion when prompted with:
“take a leisurely stroll”, even though no captions in the dataset con-
tained “leisurely” or phrased walking as “taking a walk”. However,
due to the relatively small amount of captions used to train the
encoder, the model can still produce incorrect behaviors for some
new commands. The character successfully performs a right slash

when given the prompt: “right slash”. However, “right slash with
sword” leads the character to perform a left slash.

In addition to learning skills from a motion dataset, our poli-
cies can also be trained to perform additional high-level tasks, as
outlined in Section 8.1. Examples of the tasks are available in Fig-
ure 4. Separate policies are trained for each task, which can then
be integrated into a single multi-task controller that activates the
appropriate policy given a task command.We demonstrate the effec-
tiveness of the multi-task controller in an environment containing
multiple objects that the character can interact with. The user can
issue a task command for specifying the target object and the de-
sired task that the character should perform. Our multiple-choice
question-answering framework is able to consistently identify the
correct task and target object from a user’s commands. For exam-
ple, given the command: “knock over the blue block”. the selection
model correctly identifies the policy for the Strike task, and selects
the blue block as the target. The selection model can also parse
more unusual commands, such as "mosey on down to the maroon
saloon", which correctly identifies the Location task and selects the
red block. Despite the generalization capabilities of large language
models, some commands can still lead to incorrect behaviors. More
examples of task commands and the resulting behaviors from the
model are available in Appendix C.

9.1 Dataset Coverage
To determine the impact of learning a skill embedding that aligns
motions and text, we evaluate our model’s ability to reproduce

PADL: Language-Directed Physics-Based Character Control SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea

Figure 5: Comparing dataset coverage when different skill en-
codings are used during the Policy Training stage. “Learned
Skill Embeddings” use the 128D embedding from the learned
motion encoder detailed in Section 5. We compare against
baselines where policies are trained directly using the 512D
CLIP text encodings of the dataset captions and where these
encodings are reduced to 128D using PCA.

various motions in the dataset when given the respective com-
mands. We conduct this evaluation using a thresholded cover-
age metric. Given a sequence of states specified by a motion clip
m̂ = (ŝ0, ŝ2, ..., ŝ𝑛), a policy trajectory 𝜏 = (s0, s2, ..., s𝑘) for a skill
encoding z = Enc𝑙 (𝑐) (where 𝑐 is a caption for m̂), and a threshold
parameter 𝜖 > 0, we define the coverage to be:

coverage(𝜏, m̂, 𝑐, 𝜖) = 1
𝑛

𝑛∑︁
𝑖=0
I
((

min
𝑗 ∈{0,...,𝑘 }

| |ŝ𝑖 − s𝑗 | |2
)
≤ 𝜖

)
(11)

This metric determines the fraction of the states in a motion clip
that are sufficiently close to a state in the policy’s trajectory. In our
experiments we collect 300 timesteps (10 seconds) per trajectory.
Instead of selecting a fixed threshold 𝜖 , we apply Equation 11 with
different values of 𝜖 between [0, 3] to produce a coverage curve.

Figure 5 compares the performance of the PADL model with
baseline models that directly use the CLIP encoding of a caption
as input to the policy. Coverage statistics are averaged across all
the captions for each motion clip in the dataset, and then averaged
across all motion clips. The raw CLIP encoding is 512D, while our
learned skill embedding is 128D. We include an additional baseline
model, which uses PCA to reduce the dimensionality of the CLIP
encoding to 128D. Our learned embedding is able to better repro-
duce behaviors in the dataset. Directly using the CLIP encoding as
input to the policy tends to result in lower quality motions, and has
a higher tendency of performing incorrect behaviors when directed
with language commands.

9.2 Skill Interpolation
In addition to enabling language control, the learned skill embed-
ding also leads to semantically meaningful interpolations between
different skills. Given two skill commands 𝑐1 and 𝑐2, we encode
each caption into the corresponding latents z1 and z2 using the lan-
guage encoder. We then interpolate between the two latents using
spherical interpolation, and condition the policy on the interpolated
latent to produce a trajectory. For example, given two commands:
“walk forward” and “sprint forward while swinging arms”, interpo-
lating between the two latents leads to locomotion behaviors that

Figure 6: Interpolating skills in the latent space leads to se-
mantically meaningful intermediate behaviors, such as trav-
eling with different walking heights and speeds.

travel at different speeds. Figure 6 records the average velocity
of the character when the policy is conditioned on different in-
terpolated latents. Similarly, interpolating between “walk forward”
and “crouching walk forward” leads to gaits with different walk-
ing heights. However, not all pairs of commands lead to intuitive
intermediate behaviors.

10 CONCLUSIONS
In this workwe presented PADL, a framework for learning language-
directed controllers for physics-based character animation. Lan-
guage is used to specify both high-level tasks that a character should
perform and low-level skills that the character should use to ac-
complish the tasks. While our models are able to imitate a diverse
array of skills from motion data, the models remain limited in the
variety of high-level tasks that they can perform. We are interested
in exploring more scalable approaches to modelling character inter-
actions with the environment, replacing the finite a priori collection
of tasks with a more general strategy that allows the user to specify
arbitrary environment interactions with natural language. We are
additionally interested in scaling PADL to much larger labelled
motion capture datasets [Punnakkal et al. 2021], which may lead
to agents and language encoders that can model a greater diver-
sity of skills while being more robust to paraphrasing and capable
of generalizing to new commands. In particular, we expect the
language encoder from the Skill Embedding stage to improve sig-
nificantly with more text data. We are excited for further advances
in language-guided physics-based character animation and hope
that our work contributes towards the development of powerful,
high-quality animation tools with broadly accessible, versatile, and
easy-to-use interfaces.

SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea Jordan Juravsky, Yunrong Guo, Sanja Fidler, and Xue Bin Peng

ACKNOWLEDGMENTS
We would like to thank Reallusion1 for providing motion capture
reference data for this project. Additionally, we would like to thank
the anonymous reviews for their feedback, and Steve Masseroni and
Margaret Albrecht for their help in producing the supplementary
video.

REFERENCES
Shailen Agrawal and Michiel van de Panne. 2016. Task-based Locomotion. ACM

Transactions on Graphics (Proc. SIGGRAPH 2016) 35, 4 (2016).
C. Ahuja and L. Morency. 2019. Language2Pose: Natural Language Grounded Pose

Forecasting. In 2019 International Conference on 3D Vision (3DV). IEEE Computer
Society, Los Alamitos, CA, USA, 719–728. https://doi.org/10.1109/3DV.2019.00084

Simon Alexanderson, Gustav Eje Henter, Taras Kucherenko, and Jonas Beskow. 2020.
Style-Controllable Speech-Driven Gesture Synthesis Using Normalising Flows.
Computer Graphics Forum (2020). https://doi.org/10.1111/cgf.13946

Kevin Bergamin, Simon Clavet, Daniel Holden, and James Richard Forbes. 2019.
DReCon: Data-Driven Responsive Control of Physics-Based Characters. ACM
Trans. Graph. 38, 6, Article 206 (Nov. 2019), 11 pages. https://doi.org/10.1145/
3355089.3356536

Matthew Brand. 1999. Voice Puppetry. In Proceedings of the 26th Annual Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH ’99). ACM Press/Addison-
Wesley Publishing Co., USA, 21–28. https://doi.org/10.1145/311535.311537

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sand-
hini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse,
Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language Models are Few-Shot Learners. CoRR abs/2005.14165
(2020). arXiv:2005.14165 https://arxiv.org/abs/2005.14165

Nicolas Carion, FranciscoMassa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov,
and Sergey Zagoruyko. 2020. End-to-End Object Detection with Transformers.
https://doi.org/10.48550/ARXIV.2005.12872

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol,
Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu
Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei,
Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large
Language Models Trained on Code. CoRR abs/2107.03374 (2021). arXiv:2107.03374
https://arxiv.org/abs/2107.03374

Alexander Clegg, Wenhao Yu, Jie Tan, C. Karen Liu, and Greg Turk. 2018. Learning to
Dress: Synthesizing Human Dressing Motion via Deep Reinforcement Learning.
ACM Trans. Graph. 37, 6, Article 179 (dec 2018), 10 pages. https://doi.org/10.1145/
3272127.3275048

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz
Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christo-
pher Hesse, and John Schulman. 2021. Training Verifiers to Solve Math Word
Problems. https://doi.org/10.48550/ARXIV.2110.14168

Stelian Coros, Philippe Beaudoin, and Michiel van de Panne. 2009. Robust Task-based
Control Policies for Physics-based Characters. ACM Trans. Graph. (Proc. SIGGRAPH
Asia) 28, 5 (2009), Article 170.

Marco da Silva, Yeuhi Abe, and Jovan Popović. 2008. Simulation of Human Motion
Data using Short-Horizon Model-Predictive Control. Computer Graphics Forum 27
(2008).

Martin de Lasa, IgorMordatch, and AaronHertzmann. 2010. Feature-Based Locomotion
Controllers. ACM Transactions on Graphics 29, 3 (2010).

Salil Deena and Aphrodite Galata. 2009. Speech-Driven Facial Animation Using a
Shared Gaussian Process Latent Variable Model. In Proceedings of the 5th Interna-
tional Symposium on Advances in Visual Computing: Part I (Las Vegas, Nevada)
(ISVC ’09). Springer-Verlag, Berlin, Heidelberg, 89–100. https://doi.org/10.1007/978-
3-642-10331-5_9

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
https://doi.org/10.48550/ARXIV.1810.04805

1https://actorcore.reallusion.com/

Dibya Ghosh, Avi Singh, Aravind Rajeswaran, Vikash Kumar, and Sergey Levine.
2018. Divide-and-Conquer Reinforcement Learning. In International Conference on
Learning Representations. https://openreview.net/forum?id=rJwelMbR-

F. Sebastin Grassia. 1998. Practical Parameterization of Rotations Using the Exponential
Map. J. Graph. Tools 3, 3 (March 1998), 29–48. https://doi.org/10.1080/10867651.
1998.10487493

Jonathan Ho and Stefano Ermon. 2016. Generative Adversarial Imitation Learning. In
Advances in Neural Information Processing Systems, D. Lee, M. Sugiyama, U. Luxburg,
I. Guyon, and R. Garnett (Eds.), Vol. 29. Curran Associates, Inc. https://proceedings.
neurips.cc/paper/2016/file/cc7e2b878868cbae992d1fb743995d8f-Paper.pdf

Jessica K. Hodgins, Wayne L. Wooten, David C. Brogan, and James F. O’Brien. 1995.
Animating Human Athletics. In Proceedings of the 22nd Annual Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH ’95). Association for
Computing Machinery, New York, NY, USA, 71–78. https://doi.org/10.1145/218380.
218414

Daniel Holden, Taku Komura, and Jun Saito. 2017. Phase-Functioned Neural Networks
for Character Control. ACM Trans. Graph. 36, 4, Article 42 (jul 2017), 13 pages.
https://doi.org/10.1145/3072959.3073663

Daniel Holden, Jun Saito, and Taku Komura. 2016. A Deep Learning Framework for
Character Motion Synthesis and Editing. ACM Trans. Graph. 35, 4, Article 138 (jul
2016), 11 pages. https://doi.org/10.1145/2897824.2925975

Pengyu Hong, Zhen Wen, and T.S. Huang. 2002. Real-time speech-driven face anima-
tion with expressions using neural networks. IEEE Transactions on Neural Networks
13, 4 (2002), 916–927. https://doi.org/10.1109/TNN.2002.1021892

Tero Karras, Timo Aila, Samuli Laine, Antti Herva, and Jaakko Lehtinen. 2017. Audio-
Driven Facial Animation by Joint End-to-End Learning of Pose and Emotion. ACM
Trans. Graph. 36, 4, Article 94 (jul 2017), 12 pages. https://doi.org/10.1145/3072959.
3073658

Kyungho Lee, Sehee Min, Sunmin Lee, and Jehee Lee. 2021b. Learning Time-Critical
Responses for Interactive Character Control. ACM Trans. Graph. 40, 4, Article 147
(jul 2021), 11 pages. https://doi.org/10.1145/3450626.3459826

Seyoung Lee, Sunmin Lee, Yongwoo Lee, and Jehee Lee. 2021a. Learning a family of
motor skills from a single motion clip. ACM Trans. Graph. 40, 4, Article 93 (2021).

Yoonsang Lee, Sungeun Kim, and Jehee Lee. 2010a. Data-Driven Biped Control. ACM
Trans. Graph. 29, 4, Article 129 (July 2010), 8 pages. https://doi.org/10.1145/1778765.
1781155

Yongjoon Lee, Kevin Wampler, Gilbert Bernstein, Jovan Popović, and Zoran Popović.
2010b. Motion Fields for Interactive Character Locomotion. ACM Trans. Graph. 29,
6, Article 138 (dec 2010), 8 pages. https://doi.org/10.1145/1882261.1866160

S. Levine, C. Theobalt, and V. Koltun. 2009. Real-Time Prosody-Driven Synthesis
of Body Language. ACM Transactions on Graphics 28 (12 2009), 1–10. https:
//doi.org/10.1145/1618452.1618518

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi
Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas
Hubert, Peter Choy, Cyprien de Masson d’Autume, Igor Babuschkin, Xinyun Chen,
Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey Cherepanov, James Molloy,
Daniel J. Mankowitz, Esme Sutherland Robson, Pushmeet Kohli, Nando de Freitas,
Koray Kavukcuoglu, and Oriol Vinyals. 2022. Competition-Level Code Generation
with AlphaCode. https://doi.org/10.48550/ARXIV.2203.07814

Angela S. Lin, Lemeng Wu, and Qixing Huang Raymond J. Mooney Rodolfo Corona,
Kevin Tai. 2018. Generating Animated Videos of Human Activities from Natural
Language Descriptions. In Proceedings of the Visually Grounded Interaction and
Language Workshop at NeurIPS 2018. http://www.cs.utexas.edu/users/ai-labpub-
view.php?PubID=127730

Hung Yu Ling, Fabio Zinno, George Cheng, and Michiel van de Panne. 2020. Character
Controllers Using Motion VAEs. ACM Trans. Graph. 39, 4 (2020).

Libin Liu and Jessica Hodgins. August 2018. Learning Basketball Dribbling Skills Using
Trajectory Optimization and Deep Reinforcement Learning. ACM Transactions on
Graphics 37, 4 (August 2018).

Libin Liu, Michiel van de Panne, and KangKang Yin. 2016. Guided Learning of Control
Graphs for Physics-Based Characters. ACM Transactions on Graphics 35, 3 (2016).

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A Robustly
Optimized BERT PretrainingApproach. https://doi.org/10.48550/ARXIV.1907.11692

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey,
Miles Macklin, David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, and
Gavriel State. 2021. Isaac Gym: High Performance GPU-Based Physics Simulation
For Robot Learning. CoRR abs/2108.10470 (2021). arXiv:2108.10470 https://arxiv.
org/abs/2108.10470

Fabian Mentzer, Eirikur Agustsson, Johannes Ballé, David Minnen, Nick Johnston, and
George Toderici. 2021. Neural Video Compression using GANs for Detail Synthesis
and Propagation. https://doi.org/10.48550/ARXIV.2107.12038

Josh Merel, Yuval Tassa, Dhruva TB, Sriram Srinivasan, Jay Lemmon, Ziyu Wang,
Greg Wayne, and Nicolas Heess. 2017. Learning human behaviors from motion
capture by adversarial imitation. CoRR abs/1707.02201 (2017). arXiv:1707.02201
http://arxiv.org/abs/1707.02201

Igor Mordatch, Emanuel Todorov, and Zoran Popović. 2012. Discovery of Complex
Behaviors through Contact-Invariant Optimization. ACMTrans. Graph. 31, 4, Article

https://doi.org/10.1109/3DV.2019.00084
https://doi.org/10.1111/cgf.13946
https://doi.org/10.1145/3355089.3356536
https://doi.org/10.1145/3355089.3356536
https://doi.org/10.1145/311535.311537
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.48550/ARXIV.2005.12872
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.1145/3272127.3275048
https://doi.org/10.1145/3272127.3275048
https://doi.org/10.48550/ARXIV.2110.14168
https://doi.org/10.1007/978-3-642-10331-5_9
https://doi.org/10.1007/978-3-642-10331-5_9
https://doi.org/10.48550/ARXIV.1810.04805
https://actorcore.reallusion.com/
https://openreview.net/forum?id=rJwelMbR-
https://doi.org/10.1080/10867651.1998.10487493
https://doi.org/10.1080/10867651.1998.10487493
https://proceedings.neurips.cc/paper/2016/file/cc7e2b878868cbae992d1fb743995d8f-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/cc7e2b878868cbae992d1fb743995d8f-Paper.pdf
https://doi.org/10.1145/218380.218414
https://doi.org/10.1145/218380.218414
https://doi.org/10.1145/3072959.3073663
https://doi.org/10.1145/2897824.2925975
https://doi.org/10.1109/TNN.2002.1021892
https://doi.org/10.1145/3072959.3073658
https://doi.org/10.1145/3072959.3073658
https://doi.org/10.1145/3450626.3459826
https://doi.org/10.1145/1778765.1781155
https://doi.org/10.1145/1778765.1781155
https://doi.org/10.1145/1882261.1866160
https://doi.org/10.1145/1618452.1618518
https://doi.org/10.1145/1618452.1618518
https://doi.org/10.48550/ARXIV.2203.07814
http://www.cs.utexas.edu/users/ai-labpub-view.php?PubID=127730
http://www.cs.utexas.edu/users/ai-labpub-view.php?PubID=127730
https://doi.org/10.48550/ARXIV.1907.11692
https://arxiv.org/abs/2108.10470
https://arxiv.org/abs/2108.10470
https://arxiv.org/abs/2108.10470
https://doi.org/10.48550/ARXIV.2107.12038
https://arxiv.org/abs/1707.02201
http://arxiv.org/abs/1707.02201

PADL: Language-Directed Physics-Based Character Control SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea

43 (jul 2012), 8 pages. https://doi.org/10.1145/2185520.2185539
Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob

McGrew, Ilya Sutskever, and Mark Chen. 2021. GLIDE: Towards Photorealistic
Image Generation and Editing with Text-Guided Diffusion Models. https://doi.
org/10.48550/ARXIV.2112.10741

Soohwan Park, Hoseok Ryu, Seyoung Lee, Sunmin Lee, and Jehee Lee. 2019. Learning
Predict-and-Simulate Policies from Unorganized Human Motion Data. ACM Trans.
Graph. 38, 6, Article 205 (Nov. 2019), 11 pages. https://doi.org/10.1145/3355089.
3356501

Catherine Pelachaud, Norman Badler, and Mark Steedman. 1996. Generating Facial
Expressions for Speech. Cognitive Science 20 (03 1996), 1–46. https://doi.org/10.
1016/S0364-0213(99)80001-9

Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne. 2018a. Deep-
Mimic: Example-guided Deep Reinforcement Learning of Physics-based Charac-
ter Skills. ACM Trans. Graph. 37, 4, Article 143 (July 2018), 14 pages. https:
//doi.org/10.1145/3197517.3201311

Xue Bin Peng, Yunrong Guo, Lina Halper, Sergey Levine, and Sanja Fidler. 2022. ASE:
Large-scale Reusable Adversarial Skill Embeddings for Physically Simulated Char-
acters. ACM Trans. Graph. 41, 4, Article 94 (July 2022).

Xue Bin Peng, Angjoo Kanazawa, Jitendra Malik, Pieter Abbeel, and Sergey Levine.
2018b. SFV: Reinforcement Learning of Physical Skills from Videos. ACM Trans.
Graph. 37, 6, Article 178 (Nov. 2018), 14 pages.

Xue Bin Peng, Ze Ma, Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa. 2021. AMP:
Adversarial Motion Priors for Stylized Physics-Based Character Control. ACMTrans.
Graph. 40, 4, Article 1 (July 2021), 15 pages. https://doi.org/10.1145/3450626.3459670

Matthias Plappert, Christian Mandery, and Tamim Asfour. 2017. Learning a bidirec-
tional mapping between human whole-body motion and natural language using
deep recurrent neural networks. CoRR abs/1705.06400 (2017). arXiv:1705.06400
http://arxiv.org/abs/1705.06400

Nancy Pollard, Jessica Hodgins, Marcia Riley, and Christopher Atkeson. 2002. Adapting
Human Motion for the Control of a Humanoid Robot. 2 (04 2002). https://doi.org/
10.1109/ROBOT.2002.1014737

Abhinanda R. Punnakkal, Arjun Chandrasekaran, Nikos Athanasiou, Alejandra Quiros-
Ramirez, and Michael J. Black. 2021. BABEL: Bodies, Action and Behavior with
English Labels. In Proceedings IEEE/CVF Conf. on Computer Vision and Pattern
Recognition (CVPR). 722–731.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. 2021. Learning Transferable Visual Models From
Natural Language Supervision. CoRR abs/2103.00020 (2021). arXiv:2103.00020
https://arxiv.org/abs/2103.00020

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2019. Exploring the Limits of Transfer
Learning with a Unified Text-to-Text Transformer. https://doi.org/10.48550/ARXIV.
1910.10683

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. 2022.
Hierarchical Text-Conditional Image Generation with CLIP Latents. https://doi.
org/10.48550/ARXIV.2204.06125

Sebastian Ruder. 2017. An Overview of Multi-Task Learning in Deep Neural Networks.
CoRR abs/1706.05098 (2017). arXiv:1706.05098 http://arxiv.org/abs/1706.05098

Andrei A. Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins,
James Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and
Raia Hadsell. 2015. Policy Distillation. https://doi.org/10.48550/ARXIV.1511.06295

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. CoRR abs/1707.06347 (2017).
arXiv:1707.06347 http://arxiv.org/abs/1707.06347

Sebastian Starke, He Zhang, Taku Komura, and Jun Saito. 2019. Neural State Machine
for Character-Scene Interactions. ACM Trans. Graph. 38, 6, Article 209 (nov 2019),
14 pages. https://doi.org/10.1145/3355089.3356505

Fuwen Tan, Song Feng, and Vicente Ordonez. 2018. Text2Scene: Generating Abstract
Scenes from Textual Descriptions. CoRR abs/1809.01110 (2018). arXiv:1809.01110
http://arxiv.org/abs/1809.01110

Jie Tan, Yuting Gu, C. Karen Liu, and Greg Turk. 2014. Learning Bicycle Stunts. ACM
Trans. Graph. 33, 4, Article 50 (July 2014), 12 pages. https://doi.org/10.1145/2601097.
2601121

Guy Tevet, Brian Gordon, Amir Hertz, Amit H. Bermano, and Daniel Cohen-Or. 2022.
MotionCLIP: Exposing Human Motion Generation to CLIP Space. https://doi.org/
10.48550/ARXIV.2203.08063

Adrien Treuille, Yongjoon Lee, and Zoran Popović. 2007. Near-Optimal Character
Animation with Continuous Control. In ACM SIGGRAPH 2007 Papers (San Diego,
California) (SIGGRAPH ’07). Association for Computing Machinery, New York, NY,
USA, 7–es. https://doi.org/10.1145/1275808.1276386

Jack M. Wang, David J. Fleet, and Aaron Hertzmann. 2009. Optimizing Walking
Controllers. In ACM SIGGRAPH Asia 2009 Papers (Yokohama, Japan) (SIGGRAPH
Asia ’09). Association for Computing Machinery, New York, NY, USA, Article 168,
8 pages. https://doi.org/10.1145/1661412.1618514

Jack M. Wang, Samuel R. Hamner, Scott L. Delp, and Vladlen Koltun. 2012. Optimizing
Locomotion Controllers Using Biologically-Based Actuators and Objectives. ACM

Trans. Graph. 31, 4, Article 25 (jul 2012), 11 pages. https://doi.org/10.1145/2185520.
2185521

TingwuWang, YunrongGuo,Maria Shugrina, and Sanja Fidler. 2020. UniCon: Universal
Neural Controller For Physics-based Character Motion. arXiv:2011.15119 [cs.GR]

Jungdam Won, Deepak Gopinath, and Jessica Hodgins. 2020. A Scalable Approach to
Control Diverse Behaviors for Physically Simulated Characters. ACM Trans. Graph.
39, 4, Article 33 (jul 2020), 12 pages. https://doi.org/10.1145/3386569.3392381

Katsu Yamane, Stuart O. Anderson, and Jessica K. Hodgins. 2010. Controlling humanoid
robots with human motion data: Experimental validation. In 2010 10th IEEE-RAS
International Conference on Humanoid Robots. 504–510. https://doi.org/10.1109/
ICHR.2010.5686312

Ri Yu, Hwangpil Park, and Jehee Lee. 2021. Human Dynamics from Monocular Video
with Dynamic Camera Movements. ACM Trans. Graph. 40, 6, Article 208 (dec 2021),
14 pages. https://doi.org/10.1145/3478513.3480504

Y. Yuan, S. Wei, T. Simon, K. Kitani, and J. Saragih. 2021. SimPoE: Simulated Character
Control for 3D Human Pose Estimation. In 2021 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE Computer Society, Los Alamitos, CA,
USA, 7155–7165. https://doi.org/10.1109/CVPR46437.2021.00708

Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin Choi. 2018. SWAG: A Large-
Scale Adversarial Dataset for Grounded Commonsense Inference. https://doi.org/
10.48550/ARXIV.1808.05326

Yunbo Zhang, Wenhao Yu, C. Karen Liu, Charlie Kemp, and Greg Turk. 2020. Learning
to Manipulate Amorphous Materials. ACM Trans. Graph. 39, 6, Article 189 (nov
2020), 11 pages. https://doi.org/10.1145/3414685.3417868

https://doi.org/10.1145/2185520.2185539
https://doi.org/10.48550/ARXIV.2112.10741
https://doi.org/10.48550/ARXIV.2112.10741
https://doi.org/10.1145/3355089.3356501
https://doi.org/10.1145/3355089.3356501
https://doi.org/10.1016/S0364-0213(99)80001-9
https://doi.org/10.1016/S0364-0213(99)80001-9
https://doi.org/10.1145/3197517.3201311
https://doi.org/10.1145/3197517.3201311
https://doi.org/10.1145/3450626.3459670
https://arxiv.org/abs/1705.06400
http://arxiv.org/abs/1705.06400
https://doi.org/10.1109/ROBOT.2002.1014737
https://doi.org/10.1109/ROBOT.2002.1014737
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://doi.org/10.48550/ARXIV.1910.10683
https://doi.org/10.48550/ARXIV.1910.10683
https://doi.org/10.48550/ARXIV.2204.06125
https://doi.org/10.48550/ARXIV.2204.06125
https://arxiv.org/abs/1706.05098
http://arxiv.org/abs/1706.05098
https://doi.org/10.48550/ARXIV.1511.06295
https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.1145/3355089.3356505
https://arxiv.org/abs/1809.01110
http://arxiv.org/abs/1809.01110
https://doi.org/10.1145/2601097.2601121
https://doi.org/10.1145/2601097.2601121
https://doi.org/10.48550/ARXIV.2203.08063
https://doi.org/10.48550/ARXIV.2203.08063
https://doi.org/10.1145/1275808.1276386
https://doi.org/10.1145/1661412.1618514
https://doi.org/10.1145/2185520.2185521
https://doi.org/10.1145/2185520.2185521
https://arxiv.org/abs/2011.15119
https://doi.org/10.1145/3386569.3392381
https://doi.org/10.1109/ICHR.2010.5686312
https://doi.org/10.1109/ICHR.2010.5686312
https://doi.org/10.1145/3478513.3480504
https://doi.org/10.1109/CVPR46437.2021.00708
https://doi.org/10.48550/ARXIV.1808.05326
https://doi.org/10.48550/ARXIV.1808.05326
https://doi.org/10.1145/3414685.3417868

SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea Jordan Juravsky, Yunrong Guo, Sanja Fidler, and Xue Bin Peng

A STATE AND ACTION REPRESENTATION
Weevaluate the effectiveness of our framework by training language-
directed control policies for a 3D simulated humanoid character.
The character is equipped with a sword and shield, similar to the
one used by Peng et al. [2022], with a total of 37 degrees-of-freedom.
The character’s state s𝑡 is represented by a collection of features that
describes the configuration of the character’s body. The features
include:
• Height of the root from the ground.
• Rotation of the root in the character’s local coordinate frame.
• Local rotation of each joint.
• Local velocity of each joint.
• Positions of the hands, feet, sword and shield in the charac-
ter’s local coordinate frame.

The root is designated to be the pelvis. The character’s local
coordinate frame is definedwith the origin located at the character’s
pelvis, and the x-axis aligned along the root link’s facing direction,
with the y-axis aligned with the global up vector. The rotation of
each joint is encoded using two 3D vectors, which represent the
tangent and normal of the link’s local coordinate frame expressed
in the link’s parent coordinate frame [Peng et al. 2021]. Each action
a𝑡 specifies target rotations for PD controllers positioned at each
joint. Following Peng et al. [2021], the target rotations for 3D joints
are specified using a 3D exponential map Grassia [1998].

B TASK DETAILS
B.1 Facing Task
The facing task reward is given by:

𝑟 task𝑡 = min
(
d𝑡 · d∗𝑡 , 0.5

)
(12)

where d𝑡 is the agent’s facing direction. We threshold the reward,
which creates an optimal “cone" where the task reward is saturated,
allowing the agent to deviate slightly from the target heading in
order to better imitate skills.

B.2 Location Task
The location task reward is calculated according to:

𝑟 task𝑡 =

{
0.2𝑟pos𝑡 + 0.8𝑟vel𝑡 | |x∗ − x| |2 > 𝛿pos
0.8 | |x∗ − x| |2 ≤ 𝛿pos

(13)

where x denotes the position of the character’s root, and 𝑟pos𝑡 en-
courages the character to be close to the target:

𝑟
pos
𝑡 = exp

(
−0.25| |x∗ − x| |22

)
, (14)

𝑟vel𝑡 encourages the character to move towards the target. This
velocity reward incentivizes the agent to travel speed of at least
𝛿vel = 0.5 m/s in the direction of the target, and not travel in any
other direction:

𝑟vel𝑡 = exp
(
−0.25

(
max(𝛿vel − 𝑣

proj
𝑡 , 0) + 0.1𝑣perp𝑡

))
(15)

where

𝑣
proj
𝑡 = | |projx∗ (v𝑡) | |2 (16)

𝑣
perp
𝑡 = | |perpx∗ (v𝑡) | |2 (17)

define the agent’s velocity in the direction of and tangent to the
target, respectively. We saturate the task reward when the agent
gets within 𝛿pos = 2m of the target, and terminate the episode
when the block is knocked over to disincentivize the agent simply
running into the block.

B.3 Strike Task
Finally, we have a strike task, where the objective is for the character
to knock over a target object. The goal g𝑡 = (x̃∗𝑡 , ¤̃x∗𝑡 , 𝑞∗𝑡 , ¤̃𝑞∗𝑡) records
the target object’s position x̃∗𝑡 , rotation 𝑞∗𝑡 , linear velocity ¤̃x∗𝑡 , and
angular velocity ¤̃𝑞∗𝑡 . All features are expressed in the character’s
local coordinate frame. The task-reward is then given by:

𝑟 task𝑡 =

{
0.2𝑟pos𝑡 + 0.8𝑟vel𝑡 + 0.8𝑟knock𝑡 𝑢∗𝑡 · 𝑢up ≥ 0.3
1.4 𝑢∗𝑡 · 𝑢up < 0.3

(18)

where the knock reward incentivizes the agent to knock over the
block:

𝑟knock𝑡 = 1 − 𝑢∗𝑡 · 𝑢up . (19)

Here, 𝑢up is the global up vector, and 𝑢∗𝑡 is target object’s local
up vector expressed in the global coordinate frame. The position
reward 𝑟pos𝑡 and velocity reward 𝑟vel𝑡 are the same as those used for
the location task. The task reward saturates when the block has
been sufficiently tipped over.

B.4 Adaptive Task Weight Schedule
Selecting a weight 𝜆task for the task reward that effectively balances
the task and skill reward can be challenging, and can require task-
specific tuning. Setting 𝜆task too low can lead to policies that only
learn to imitate skills without any regard for the task. Similarly,
when 𝜆task is too high, the policy can learn to perform the task
using unnatural behaviors, entirely ignoring the skill command.
Therefore, instead of using a constant task weight or manually
constructing an annealing schedule for 𝜆task, we use a proportional
controller to dynamically adjust 𝜆task over the course of the training
process, in a similar manner as Mentzer et al. [2021]. The controller
is parameterized by a target task reward 𝑟 tar, as well as by a con-
troller gain 𝑘𝑝 and a small positive constant 𝜖 for numerical stability.
At epoch 𝑖 , we calculate the mean task reward 𝑟 task𝑖 across the ex-
perience buffer. We then update the task weight 𝜆task

𝑖
according to

the error between 𝑟 task𝑖 and 𝑟 tar in log-space:

𝜆task𝑖+1 = exp
(
log

(
𝜆task𝑖

)
+ 𝑘𝑝

(
log

(
𝑟 tar + 𝜖

)
− log

(
𝑟 task𝑖 + 𝜖

)))
(20)

The task weight is initialized to be 𝜆task0 = 3, and 𝜆task
𝑖

is clamped to
the range [0.5, 3]. For the location task we set a target task reward
weight of 0.15, while for the strike task we set a target reward of
0.3. For the facing task we found the controller to be unnecessary
and used a constant 𝜆task = 1.

C MULTIPLE-CHOICE MODEL EXAMPLE
OUTPUTS

In Table 1, we provide examples of task commands and the cor-
responding object and policy that the multiple-choice QA model

PADL: Language-Directed Physics-Based Character Control SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea

(a) "forward walk", "walk forward while swaying arms".

(b) "sprint forwards while swinging arms".

(c) "kick", "kick with right leg", "right kick into step forward", "right leg kick".

(d) "left shield bash", "shield bash left", "shield bash to the left while standing still".

(e) "slash right", "right swing", "swing sword to the right", "stand still and slash to the right".

Figure 7: Reference motion clips (left side) and their corresponding captions, along with motions produced by a simulated
character when directed to perform the reference skills through language commands (right side).

identified.We observe that the QAmodel is able to correctly identify
the user’s intent even when provided with exotic task commands
such as “destroy the green guy” or “mosey on down to the maroon
saloon”. We also provide several examples where the QA model
incorrectly identifies the task and/or object. For example, the model
predicts that the task command “go to the blue target” references
the strike task instead of the location task, while “go to the blue
block” and “go to the blue tower” are correctly identified as the
location task. The QA model is also occasionally sensitive to para-
phrasing, such as when it correctly identifies the task in “navigate
to the lime rectangular prism" but not in “navigate toward the lime
rectangular prism".

D COMPARING PADL TO OTHER
ADVERSARIAL RL FRAMEWORKS

When training PADL agents (detailed in Section 6), the skill ob-
jective explicitly rewards agents for being able to imitate every
motion clip in the dataset, using a discriminator trained on the joint

distribution of state transitions and skill embeddings. We find that
the use of a joint discriminator helps to mitigate mode collapse
during PADL training when compared to other work in adversarial
reinforcement learning that uses discriminators trained only on
the marginal distribution of state transitions. Here we specifically
compare our method to two related adversarial RL frameworks,
AMP [Peng et al. 2021] and ASE [Peng et al. 2022].

D.1 Comparison to AMP
AMP, like PADL, trains agents using a combination of task and
skill rewards. However, since AMP’s skill reward uses a marginal
discriminator, mode collapse can occur, where agents focus on
imitating a specific subset of skills in the reference motion data
while completing the high-level task. PADL’s use of a joint discrim-
inator in the skill reward, where policies are explicitly trained to
accomplish the high-level task using different reference skills, can
improves a policy’s coverage of the dataset. Moreover, PADL agents,
unlike AMP agents, are conditioned on a latent variable encoding
the skill to be used. This allows a user to control in real-time which

SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea Jordan Juravsky, Yunrong Guo, Sanja Fidler, and Xue Bin Peng

Table 1: Example task commands and the corresponding object and task identified by the multiple-choice QA model.

Task Command Identified Object Identified Task
"knock over the blue block" "the blue object nearby." ✓ "knock over a specified object." ✓

"knock over the green block" "the green object nearby." ✓ "knock over a specified object." ✓

"go to the red block" "the red object nearby." ✓ "navigate to a specified destination."✓
"go to the orange block" "the orange object nearby."✓ "navigate to a specified destination."✓
"face the purple block" "the purple object nearby." ✓ "orient himself to face a specified heading."✓

"knock over the purple target" "the purple object nearby." ✓ "knock over a specified object." ✓

"turn towards the blue target" "the blue object nearby." ✓ "orient himself to face a specified heading."✓
"turn towards the orange target" "the orange object nearby." ✓ "orient himself to face a specified heading."✓

"face the orange target" "the orange object nearby." ✓ "orient himself to face a specified heading."✓
"face the purple target" "the purple object nearby." ✓ "orient himself to face a specified heading."✓
"go to the blue target" "the blue object nearby." ✓ "knock over a specified object." ✗

"topple the red tower" "the red object nearby."✓ "knock over a specified object." ✓

"face the orange obelisk" "the orange object nearby." ✓ "orient himself to face a specified heading." ✓

"navigate to the lime rectangular prism" "the green object nearby." ✓ "navigate to a specified destination." ✓

"navigate toward the lime rectangular prism" "the green object nearby." ✓ "orient himself to face a specified heading." ✗

"look at the stop sign" "the red object nearby." ✓ "orient himself to face a specified heading." ✓

"watch the sunset" "the red object nearby." ✓ "orient himself to face a specified heading." ✓

"knock over the cobalt block" "the red object nearby." ✗ "knock over a specified object." ✓

"get close to the violet marker" "the purple object nearby."✓ "orient himself to face a specified heading." ✗

"destroy the green guy" "the green object nearby." ✓ "knock over a specified object." ✓

"mosey on down to the maroon saloon" "the red object nearby."✓ "navigate to a specified destination." ✓

skills a trained agent uses to accomplish a task, which is crucial for
effective language control.

D.2 Comparison to ASE
Both ASE low-level controllers and PADL controllers are condi-
tioned on skill latents, allowing the skill the agent uses to be dynam-
ically controlled. During ASE training, latents are drawn randomly
from a prior distribution (e.g. the unit sphere); the policy learns a
meaningful representation on this latent space throughout train-
ing using a marginal discriminator combined with an encoder that
promotes high mutual information between a latent and its cor-
responding policy trajectory. This approach too can lead to mode
collapse, with only a subset of skills from the reference dataset
being represented in the latent space. PADL mitigates this type
of mode collapse by assigning a distinct motion latent to every
motion clip in the reference dataset (these latents are learned in
the Skill Embedding stage), guaranteeing that every motion clip is
represented in the latent space.

In one of our early experiments developing language-controlled
animation systems, we attached a language head on top of an ASE
low-level controller.We created a dataset of (latent, caption) pairs by
sampling latents from the unit sphere, recording trajectories from a
pre-trained controller checkpoint with those latents, and annotating
the trajectories with natural language. We then trained a small MLP
to reverse the annotation process and map the BERT embeddings of
a trajectory’s caption to the corresponding latent that produced the
trajectory. This approach allowed for a policy’s skill to be controlled
with language, but is annotation inefficient, since each dataset of
(latent, caption) pairs is only applicable for a specific checkpoint’s
learned latent space. A different ASE checkpoint (which possesses a

ALGORITHM 1: Multi-Task Aggregation

agentState← agent state;
while not done do

skillLatent = Encl(getSkillCommand());
policyIdx, objectIdx = QAModel(getTaskCommand());
policy = policies[policyIdx];
targetObjectState = objects[objectIdx];
action = policy(agentState, skillLatent, targetObjectState);
agentState = env.step(action);

end

different learned latent space) requires the collection of an entirely
new dataset of annotations. Moreover, due to mode-collapse, more
complicated skills in the dataset were often not represented in the
policy’s latent space.

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	4 Overview
	5 Skill Embedding
	6 Policy Training
	6.1 Skill Objective

	7 Multi-Task Aggregation
	7.1 Multiple Choice Question Answering

	8 Experimental Setup
	8.1 Tasks
	8.2 Training

	9 Results
	9.1 Dataset Coverage
	9.2 Skill Interpolation

	10 Conclusions
	Acknowledgments
	References
	A State and Action Representation
	B Task Details
	B.1 Facing Task
	B.2 Location Task
	B.3 Strike Task
	B.4 Adaptive Task Weight Schedule

	C Multiple-Choice Model Example Outputs
	D Comparing PADL to Other Adversarial RL Frameworks
	D.1 Comparison to AMP
	D.2 Comparison to ASE

