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Abstract

Humans are able to perform a myriad of sophisticated tasks by drawing upon skills
acquired through prior experience. For autonomous agents to have this capability,
they must be able to extract reusable skills from past experience that can be recom-
bined in new ways for subsequent tasks. Furthermore, when controlling complex
high-dimensional morphologies, such as humanoid bodies, tasks often require
coordination of multiple skills simultaneously. Learning discrete primitives for
every combination of skills quickly becomes prohibitive. Composable primitives
that can be recombined to create a large variety of behaviors can be more suitable
for modeling this combinatorial explosion. In this work, we propose multiplicative
compositional policies (MCP), a method for learning reusable motor skills that
can be composed to produce a range of complex behaviors. Our method factorizes
an agent’s skills into a collection of primitives, where multiple primitives can be
activated simultaneously via multiplicative composition. This flexibility allows the
primitives to be transferred and recombined to elicit new behaviors as necessary
for novel tasks. We demonstrate that MCP is able to extract composable skills
for highly complex simulated characters from pre-training tasks, such as motion
imitation, and then reuse these skills to solve challenging continuous control tasks,
such as dribbling a soccer ball to a goal, and picking up an object and transporting
it to a target location. (Video1)

1 Introduction

Reinforcement learning is commonly applied to solve tasks from scratch. While tabula rasa learning
can achieve state-of-the-art performance on a broad range of tasks [4, 13, 27, 29, 39], this approach
can incur significant drawbacks in terms of sample efficiency and limits the complexity of skills that
an agent can acquire. The ability to transfer and re-purpose skills learned from prior experiences
to new domains is a hallmark of intelligent agents. Transferable skills can enable agents to solve
tasks that would otherwise be prohibitively challenging to learn from scratch, by leveraging prior
experiences to provide structured exploration and more effective representations. However, learning
versatile and reusable skills that can be applied to a diverse set of tasks remains a challenging problem,
particularly when controlling systems with large numbers of degrees-of-freedom.

In this work, we propose multiplicative compositional policies (MCP), a method for learning reusable
motor primitives that can be composed to produce a continuous spectrum of skills. Once learned, the
primitives can be transferred to new tasks and combined to yield different behaviors as necessary
in the target domain. Standard hierarchical models [10, 41] often activate only a single primitive at
each timestep, which can limit the diversity of behaviors that can be produced by the agent. MCP
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composes primitives through a multiplicative model that enables multiple primitives to be activated
at a given timestep, thereby providing the agent a more flexible range of skills. Our method can
therefore be viewed as providing a means of composing skills in space, while standard hierarchical
models compose skills in time by temporally sequencing the set of available skills. MCP can also
be interpreted as a variant of latent space models, where the latent encoding specifies a particular
composition of a discrete set of primitives.

The primary contribution of our work is a method for learning and composing transferable skills using
multiplicative compositional policies. By pre-training the primitives to imitate a corpus of different
motion clips, our method learns a set of primitives that can be composed to produce a flexible range
of behaviors. While conceptually simple, MCP is able to solve a suite of challenging mobile manipu-
lation tasks with complex simulated characters, significantly outperforming prior methods as task
complexity grows. Our analysis shows that the primitives discover specializations that are reminiscent
of previous manually-designed control structures, and produce coherent exploration strategies that are
vital for high-dimensional long-horizon tasks. In our experiments, MCP substantially outperforms
prior methods for skill transfer, with our method being the only approach that learns a successful
policy on the most challenging task in our benchmark.

2 Preliminaries

We consider a multi-task RL framework for transfer learning, consisting of a set of pre-training
tasks and transfer tasks. An agent is trained from scratch on the pre-training tasks, but it may then
apply any skills learned during pre-training to the subsequent transfer tasks. The objective then is to
leverage the pre-training tasks to acquire a set of reusable skills that enables the agent to be more
effective at the later transfer tasks. Each task is represented by a state space st ∈ S, an action space
at ∈ A, a dynamics model st+1 ∼ p(st+1|st, at), a goal space g ∈ G, a goals distribution g ∼ p(g),
and a reward function rt = r(st, at, g). The goal specifies task specific features, such as a motion
clip to imitate, or the target location an object should be placed. All tasks share a common state space,
action space, and dynamics model. However, the goal space, goal distribution, and reward function
may differ between pre-training and transfer tasks. For each task, the agent’s objective is to learn
an optimal policy π∗ that maximizes its expected return J(π) = Eg∼p(g),τ∼pπ(τ |g)

[∑T
t=0 γ

trt

]
over the distribution of goals from the task, where pπ(τ |g) = p(s0)

∏T−1
t=0 p(st+1|st, at)π(at|st, g)

denotes the distribution over trajectories τ induced by the policy π for a given goal g. T represents
the time horizon, and γ ∈ [0, 1] is the discount factor. Successful transfer cannot be expected for
unrelated tasks. Therefore, we consider the setting where the pre-training tasks encourage the agent
to learn relevant skills for the subsequent transfer tasks, but may not necessarily cover the full range
of skills required to be effective at the transfer tasks.

Hierarchical policies are a common model for reusing and composing previously learned skills. One
approach for constructing a hierarchical policy is by using a mixture-of-experts model [15, 19, 28, 31,
42], where the composite policy’s action distribution π(a|s, g) is represented by a weighted sum of
distributions from a set of primitives πi(a|s, g) (i.e. low-level policies). A gating function determines
the weights wi(s, g) that specify the probability of activating each primitive for a given s and g,

π(a|s, g) =

k∑
i=1

wi(s, g)πi(a|s, g),

k∑
i=1

wi(s, g) = 1, wi(s, g) ≥ 0. (1)

Here, k denotes the number of primitives. We will refer to this method of composing primitives as an
additive model. To sample from the composite policy, a primitive πi is first selected according to w,
then an action is sampled from the primitive’s distribution. Therefore, a limitation of the additive
model is that only one primitive can be active at a particular timestep. While complex behaviors
can be produced by sequencing the various primitives in time, the action taken at each timestep
remains restricted to the behavior prescribed by a single primitive. Selecting from a discrete set
of primitive skills can be effective for simple systems with a small number of actuated degrees-of-
freedom, where an agent is only required to perform a small number of subtasks at the same time.
But as the complexity of the system grows, an agent might need to perform more and more subtasks
simultaneously. For example, a person can walk, speak, and carry an object all at the same time.
Furthermore, these subtasks can be combined in any number of ways to produce a staggering array
of diverse behaviors. This combinatorial explosion can be prohibitively challenging to model with
policies that activate only one primitive at a time.

2



3 Multiplicative Compositional Policies

In this work, we propose multiplicative compositional policies (MCP), a method for composing
primitives that addresses this combinatorial explosion by explicitly factoring the agent’s behavior –
not with respect to time, but with respect to the action space. Our model enables the agent to activate
multiple primitives simultaneously, with each primitive specializing in different behaviors that can be
composed to produce a continuous spectrum of skills. Our probabilistic formulation accomplishes
this by treating each primitive as a distribution over actions, and the composite policy is obtained by
a multiplicative composition of these distributions,

π(a|s, g) =
1

Z(s, g)

k∏
i=1

πi(a|s, g)wi(s,g), wi(s, g) ≥ 0. (2)

Unlike an additive model, which activates only a single primitive per timestep, the multiplicative
model allows multiple primitives to be activated simultaneously. The gating function specifies the
weights wi(s, g) that determine the influence of each primitive on the composite action distribution,
with a larger weight corresponding to a larger influence. The weights need not be normalized, but
in the following experiments, the weights will be bounded wi(s, g) ∈ [0, 1]. Z(s, g) is the partition
function that ensures the composite distribution is normalized. While the additive model directly
samples actions from the selected primitive’s distribution, the multiplicative model first combines the
primitives, and then samples actions from the resulting distribution.

3.1 Gaussian Primitives

Gaussian policies are a staple for continuous control tasks, and modeling multiplicative primitives
using Gaussian policies provides a particularly convenient form for the composite policy. Each
primitive πi(a|s, g) = N (µi(s, g),Σi(s, g)) will be modeled by a Gaussian with mean µi(s, g) and
diagonal covariance matrix Σi(s, g) = diag

(
σ1
i (s, g), σ2

i (s, g), ..., σ
|A|
i

)
, where σji (s, g) denotes

the variance of the jth action parameter from primitive i, and |A| represents the dimensionality of
the action space. A multiplicative composition of Gaussian primitives yields yet another Gaussian
policy π(a|s, g) = N (µ(s, g),Σ(s, g)). Since the primitives model each action parameter with an
independent Gaussian, the action parameters of the composite policy π will also assume the form of
independent Gaussians with component-wise mean µj(s, g) and variance σj(s, g),

µj(s, g) =
1∑k

l=1
wl(s,g)

σjl (s,g)

k∑
i=1

wi(s, g)

σji (s, g)
µji (s, g), σj(s, g) =

(
k∑
i=1

wi(s, g)

σji (s, g)

)−1

. (3)

Note that while wi(s, g) determines a primitive’s overall influence on the composite distribution, each
primitive can also independently adjust its influence per action parameter through σji (s, g). Once
the parameters of the composite distribution have been determined, π can be treated as a regular
Gaussian policy, and trained end-to-end using standard automatic differentiation tools.

3.2 Pre-Training and Transfer

Algorithm 1 MCP Pre-Training and Transfer
1: Pre-training:
2: πi ← random parameters for i = 1, ..., k
3: w ← random parameters
4: π∗1:k, w

∗ = arg max
π1:k,w

Jpre (π1:k, w)

5: Transfer:
6: ω ← random parameters
7: ω∗ = arg max

ω
Jtra (π∗1:k, ω)

The primitives are learned through a set of pre-
training tasks. The same set of primitives is
responsible for solving all pre-training tasks,
which results in a collection of primitives that
captures the range of behaviors needed for the
set of tasks. Note, the primitives are not man-
ually assigned to particularly tasks. Instead,
the primitives are trained jointly in an end-to-
end fashion and the specializations emerge au-
tomatically from the learning process. Algo-
rithm 1 illustrates the overall training process.
Jpre(π1:k, w) denotes the objective for the pre-training tasks for a given set of primitives π1:k and
gating function w, and Jtra(π1:k, ω) denotes the objective for the transfer tasks. When transferring
primitives to a new task, the parameters of the primitives are kept fixed, while a new policy is trained
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(a) Ant (b) Biped (c) Humanoid (d) T-Rex

Figure 1: Our method is evaluated on complex 3D characters with different morphologies and large
numbers of degrees-of-freedom.

to specify weights for composing the primitives. Therefore, the primitives can be viewed as a set
of nonlinear basis functions that defines a new action space for use in subsequent tasks. During
pre-training, in order to force the primitives to specialize in distinct skills, we use an asymmetric
model, where only the gating function wi(s, g) observes the goal g, and the primitives have access
only to the state s,

π(a|s, g) =
1

Z(s, g)

k∏
i=1

πi(a|s)wi(s,g), πi(a|s) = N (µi(s),Σi(s)) . (4)

This asymmetric model prevents the degeneracy of a single primitive becoming responsible for all
goals, and instead encourages the primitives to learn distinct skills that can then be composed by the
gating function as needed for a given goal. Furthermore, since the primitives depend only on the state,
they can be conveniently transferred to new tasks that share similar state spaces but may have different
goal spaces. When transferring the primitives to new tasks, the parameters of the primitives πi(a|s)
are kept fixed to prevent catastrophic forgetting, and a new gating function ω(w|s, g) is trained to
specify the weights w = (w1, w2, ...) for composing the primitives.

4 Related Work

Learning reusable representations that are transferable across multiple tasks has a long history in
machine learning [1, 5, 30, 33, 43]. Finetuning remains a popular transfer learning technique when
using neural network, where a model is first trained on a source domain, and then the learned features
are reused in a target domain by finetuning via backpropagation [8, 18]. One of the drawbacks of this
procedure is catastrophic forgetting, as backpropagation is prone to destroying previously learned
features before the model is able to utilize them in the target domain [21, 34, 35].

Hierarchical Policies: A popular method for combining and reusing skills is by constructing
hierarchical policies, where a collection of low-level controllers, which we will refer to as primitives,
are integrated together with the aid of a gating function that selects a suitable primitive for a given
scenario [2, 15, 41]. A common approach for building hierarchical policies is to first train a collection
of primitives through a set of pre-training tasks, which encourages each primitive to specialize in
distinct skills [6, 12, 24, 25, 31]. Once trained, the primitives can be integrated into a hierarchical
policy and transferred to new tasks. End-to-end methods have also been proposed for training
hierarchical policies [2, 7, 23, 44]. However, since standard hierarchical policies only activate one
primitive at a time, it is not as amenable for composition or interpolation of multiple primitives in
order to produce new skills.

Latent Space Models: Our work falls under a class of methods that we will refer to broadly as
latent space models. These methods specify controls through a latent representation that is then
mapped to the controls (i.e. actions) of the underlying system [22]. Similar to hierarachical models,
a latent representation can first be learned using a set of pre-training tasks, before transferring
to downstream tasks [14, 17]. But unlike a standard hierarchical model, which activates a single
primitive at a time, continuous latent variables can be used to enable more flexible interpolation of
skills in the latent space. Various diversity-promoting pre-training techniques have been proposed for
encouraging the latent space to model semantically distinct behaviors [9, 11, 16]. Demonstrations can
also be incorporated during pre-training to acquire more complex skills [26]. In this work, we present
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(a) Heading: Humanoid (b) Carry: Biped

(c) Dribble: Humanoid (d) Dribble: T-Rex

Figure 2: The transfer tasks pose a challenging combination of locomotion and object manipulation,
such as carrying an object to a target location and dribbling a ball to a goal, which requires coordination
of multiple body parts and temporally extended behaviors.

a method for modeling latent skill representations as a composition of multiplicative primitives. We
show that the additional structure introduced by the primitives enables our agents to tackle complex
continuous control tasks, achieving competitive performance when compared to previous models,
and significantly outperforming prior methods as task complexity grows.

5 Experiments

We evaluate the effectiveness of our method on controlling complex simulated characters, with large
numbers of degrees-of-freedom (DoFs), to perform challenging long-horizon tasks. The tasks vary
from simple locomotion tasks to difficult mobile manipulation tasks. The characters include a simple
14 DoF ant, a 23 DoF biped, a more complex 34 DoF humanoid, and a 55 DoF T-Rex. Illustrations
of the characters are shown in Figure 1, and examples of transfer tasks are shown in Figure 2. Our
experiments aim to study MCP’s performance on complex temporally extended tasks, and examine
the behaviors learned by the primitives. We also evaluate our method comparatively to determine the
value of multiplicative primitives as compared to more standard additive mixture models, as well as
to prior methods based on options and latent space embeddings. Behaviors learned by the policies
are best seen in the supplementary video1.

5.1 Experimental Setup

Pre-Training Tasks: The pre-training tasks in our experiments consist of motion imitation tasks,
where the objective is for the character to mimic a corpus of different reference motions. Each
reference motion specifies a sequence of target states {ŝ0, ŝ1, ..., ŝT } that the character should track
at each timestep. We use a motion imitation approach following Peng et al. [32]. But instead of
training separate policies for each motion, a single policy, composed of multiple primitives, is trained
to imitate a variety of motion clips. To imitate multiple motions, the goal gt = (ŝt+1, ŝt+2) provides
the policy with target states for the next two timesteps. A reference motion is selected randomly at
the start of each episode. To encourage the primitives to learn to transition between different skills,
the reference motion is also switched randomly to another motion within each episode. The corpus of
motion clips is comprised of different walking and turning motions.

Transfer Tasks: We evaluate our method on a set of challenging continuous control tasks, involving
locomotion and object manipulation using the various characters. Detailed descriptions of each task
are available in the supplementary material.

Heading: First we consider a simple heading task, where the objective is for the character to move
along a target heading direction θ̂t. The goal gt = (cos(θ̂t),−sin(θ̂t)) encodes the heading as a unit
vector along the horizontal plane. The target heading varies randomly over the course of an episode.
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Figure 3: Schematic illustrations of the MCP architecture. The gating function receives both s and
g as inputs, which are first encoded by separate networks, with 512 and 256 units. The resulting
features are concatenated and processed with a layer of 256 units, followed by a sigmoid output layer
to produce the weights w(s, g). The primitives receive only s as input, which is first processed by a
common network, with 512 and 256 units, before branching into separate layers of 256 units for each
primitive, followed by a linear output layer that produces µi(s) and Σi(s) for each primitive. ReLU
activation is used for all hidden units.

Environment Scratch Finetune Hierarchical Option-Critic MOE Latent Space MCP (Ours)
Heading: Biped 0.927± 0.032 0.970± 0.002 0.834± 0.001 0.952± 0.012 0.918± 0.002 0.970± 0.001 0.976± 0.002
Carry: Biped 0.027± 0.035 0.324± 0.014 0.001± 0.002 0.346± 0.011 0.013± 0.013 0.456± 0.031 0.575± 0.032
Dribble: Biped 0.072± 0.012 0.651± 0.025 0.546± 0.024 0.046± 0.008 0.073± 0.021 0.768± 0.012 0.782± 0.008
Dribble: Humanoid 0.076± 0.024 0.598± 0.030 0.198± 0.002 0.058± 0.007 0.043± 0.021 0.751± 0.006 0.805± 0.006
Dribble: T-Rex 0.065± 0.032 0.074± 0.011 − 0.098± 0.013 0.070± 0.017 0.115± 0.013 0.781± 0.021
Holdout: Ant 0.951± 0.093 0.885± 0.062 − − − 0.745± 0.060 0.812± 0.030

Table 1: Performance statistics of different models on transfer tasks. Additional experiments are
available in the supplementary material. MCP outperforms other methods on a suite of challenging
tasks with complex simulated characters.

Carry: To evaluate our method’s performance on long horizon tasks, we consider a mobile manipula-
tion task, where the objective is to move a box from a source location to a target location. The task
can be decomposed into a sequence of subtasks, where the character must first pickup the box from
the source location, before carrying it to the target location, and placing it on the table. The source and
target are placed randomly each episode. Depending on the initial configuration, the task may require
thousands of timesteps to complete. The goal gt = (xtar, qtar, xsrc, qsrc, xb, qb, vb, ωb) encodes the
target’s position xtar and orientation qtar represented as a quaternion, the source’s position xsrc and
orientation qsrc, and box’s position xb, orientation qb, linear velocity vb, and angular velocity ωb.

Dribble: This task poses a challenging combination of locomotion and object manipulation, where
the objective is to move a soccer ball to a target location. Since the policy does not have direct control
over the ball, it must rely on complex contact dynamics in order to manipulate the movement of the
ball while also maintaining balance. The location of the ball and target are randomly initialized each
episode. The goal gt = (xtar, xb, qb, vb, ωb) encodes the target location xtar, and ball’s position xb,
orientation qb, linear velocity vb, and angular velocity ωb.

Model Representation: All experiments use a similar network architecture for the policy, as
illustrated in Figure 3. Each policy is composed of k = 8 primitives. The gating function and
primitives are modeled by separate networks that output w(s, g), µi:k(s), and Σi:k(s), which are
then composed according to Equation 2 to produce the composite policy. The state describes the
configuration of the character’s body, with features consisting of the relative positions of each link
with respect to the root, their rotations represented by quaternions, and their linear and angular
velocities. Actions from the policy specify target rotations for PD controllers positioned at each
joint. Target rotations for 3D spherical joints are parameterized using exponential maps. The policies
operate at 30Hz and are trained using proximal policy optimization (PPO) [37].

5.2 Comparisons
We compare MCP to a number of prior methods, including a baseline model trained from scratch for
each transfer task, and a model first pre-trained to imitate a reference motion before being finetuned
on the transfer tasks. To evaluate the effects of being able to activate and compose multiple primitives
simultaneously, we compare MCP to models that activate only one primitive at a time, including a
hierarchical model that sequences a set of pre-trained skills [24, 25], an option-critic model [2], and a
mixture-of-experts model (MOE) analogous to Equation 1. Finally, we also include comparisons to a
continuous latent space model with an architecture similar to Hausman et al. [16] and Merel et al.
[26]. All models, except for the scratch model, are pre-trained with motion imitation [32]. Detailed
descriptions of each method can be found in the supplementary material. Figure 4 illustrates learning
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Figure 4: Learning curves of the various models when applied to transfer tasks. MCP substantially
improves learning speed and performance on challenging tasks (e.g. carry and dribble), and is the
only method that succeeds on the most difficult task (Dribble: T-Rex).

Figure 5: Left: Learning curves on holdout tasks in the Ant environment. Right: Trajectories
produced by models with target directions from pre-training, and target directions from the holdout
set after training on transfer tasks. The latent space model is prone to overfitting to the pre-training
tasks, and can struggle to adapt to the holdout tasks.

curves for the various methods on the transfer tasks and Table 1 summarizes their performance. Each
environment is denoted by "Task: Character". Performance is recorded as the average normalized
return across approximately 100 episodes, with 0 being the minimum possible return per episode
and 1 being the maximum. Three models initialized with different random seeds are trained for each
environment and method.

Our experiments show that MCP performs well across the suite of tasks. For simple tasks such as
heading, all models show similar performance. But as task complexity increases, MCP exhibits
significant improvements to learning speed and asymptotic performance. Training from scratch is
effective for the simple heading task, but is unable to solve the more challenging carry and dribble
tasks. Finetuning proved to be a strong baseline, but struggles with the more complex morphologies.
With higher dimensional action spaces, independent action noise is less likely to produce useful
behaviors. Models that activate only a single primitive at a time, such as the hierarchical model,
option-critic model, and MOE model, tend to converge to lower asymptotic performance due to
their limited expressivity. MOE is analogous to MCP where only a single primitive is active at a
time. Despite using a similar number of primitives as MCP, being able to activate only one primitive
per timestep limits the variety of behaviors that can be produced by MOE. This suggests that the
flexibility of MCP to compose multiple primitives is vital for more sophisticated tasks. The latent
space model shows strong performance on most tasks. But when applied to characters with more
complex morphologies, such as the humanoid and T-Rex, MCP consistently outperforms the latent
space model, with MCP being the only model that solves the dribbling task with the T-Rex.

We hypothesize that the performance difference between MCP and the latent space model may
be due to the process through which a latent code w is mapped to an action for the underlying
system. With the latent space model, the pre-trained policy π(a|s, w) acts as a decoder that maps
w to a distribution over actions. We have observed that this decoder has a tendency to overfit to the
pre-training behaviors, and can therefore limit the variety of behaviors that can be deployed on the
transfer tasks. In the case of MCP, if σji is the same across all primitives, then we can roughly view w
as specifying a convex combination of the primitive means µi:k. Therefore, µ1:k forms a convex hull
in the original action space, and the transfer policy ω(w|s, g) can select any action within this set. As
such, MCP may provide the transfer policy with a more flexible range of skills than the latent space
model. To test this hypothesis, we evaluate the different models on transferring to out-of-distribution
tasks using a simple setup. The environment is a variant of the standard Gym Ant environment [4],
where the agent’s objective is to run along a target direction θ̂. During pre-training, the policies are
trained with directions θ̂ ∈ [0, 3/2π]. During transfer, the directions are sampled from a holdout set
θ̂ ∈ [3/2π, 2π]. Figure 5 illustrates the learning curves on the transfer task, along with the trajectories
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Figure 6: Trajectories of the humanoid’s root along the horizontal plane visualizing the exploration
behaviors of different models. MCP and other models that are pre-trained with motion imitation
produce more structured exploration behaviors.

Figure 7: Left: Weights for primitives over the course of a walk cycle. Primitives develop distinct
specializations, with some primitives becoming most active during the left stance phase, and others
during right stance. Right: PCA embedding of actions from each primitive exhibits distinct clusters.

produced by the models when commanded to follow different target directions from the pre-training
and transfer tasks. Indeed we see that the latent space model is prone to overfitting to the directions
from pre-training, and struggles to adapt to the holdout directions. MCP provides the transfer policy
sufficient flexibility to adapt quickly to the transfer tasks. The scratch and finetune models also
perform well on the transfer tasks, since they operate directly on the underlying action space.

5.3 Exploration Behaviors
To analyze the exploration behaviors produced by the primitives, we visualize the trajectories obtained
by random combinations of the primitives, where the weights are sampled from a Gaussian and
held fixed over the course of a trajectory. Figure 6 illustrates the trajectories of the humanoid’s
root produced by various models. Similar to MCP, the trajectories from the latent space model are
also produced by sampling w from a Gaussian. The trajectories from the hierarchical model are
generated by randomly sequencing the set of primitives. The model trained from scratch simply
applies Gaussian noise to the actions, which leads to a fall after only few timesteps. Models that are
pre-trained with motion imitation produce more structured behaviors that travel in different directions.

5.4 Primitive Specializations
To analyze the specializations of the primitives, we record the weight of each primitive over the
course of a walk cycle. Figure 7 illustrates the weights during pre-training, when the humanoid is
trained to imitate walking motions. The activations of the primitives show a strong correlation to the
phase of a walk cycle, with primitive 1 becoming most active during left stance and becoming less
active during right stance, while primitive 2 exhibits precisely the opposite behavior. The primitives
appear to have developed a decomposition of a walking gait that is commonly incorporated into the
design of locomotion controllers [45]. Furthermore, these specializations consistently appear across
multiple training runs. Next, we visualize the actions proposed by each primitive. Figure 7 shows
a PCA embedding of the mean action from each primitive. The actions from each primitive form
distinct clusters, which suggests that the primitives are indeed specializing in different behaviors.

6 Conclusion
We presented multiplicative compositional policies (MCP), a method for learning and composing
skills using multiplicative primitives. Despite its simplicity, our method is able to learn sophisticated
behaviors that can be transferred to solve challenging continuous control tasks with complex simulated
agents. Once trained, the primitives form a new action space that enables more structured exploration
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and provides the agent with the flexibility to combine the primitives in novel ways in order to elicit
new behaviors for a task. Our experiments show that MCP can be effective for long horizon tasks
and outperforms prior methods as task complexity grows. While MCP provides a form of spatial
abstraction, we believe that incorporating temporal abstractions is an important direction. During
pre-training, some care is required to select an expressive corpus of reference motions. In future work,
we wish to investigate methods for recovering sophisticated primitive skills without this supervision.
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Supplementary Material

A Gaussian Composition Derivation

In this section, we review a proof that the weighted product of k univariate Gaussian primitives
πi(x) = N (µi, σi), with mean µi, variance σi, and weight wi, results in a composite Gaussian
distribution π(x) with mean µ and variance σ given by:

π(x) =
1

Z

k∏
i=1

πi(x)wi = N (µ, σ) (5)

µ =
1∑k
i=1

k∑
i=1

wi
σi
µi, σ =

(
k∑
i=1

wi
σi

)−1

, (6)

where Z is the normalilzation constant that ensures the composite distribution is normalized. We
start by writing out the expression of the product of Gaussian primitives
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Multiplying the exponent by
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we get,
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Next, we complete the squares
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Finally, since −
(∑
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∑
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is independent of x, it can be subsumed into the

normalization constant Z, resulting in the desired expression for the composition distribution
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B Additional Experiments

A comprehensive set of learning curves for all transfer tasks are available in Figure 9 and Table 2
summarizes the performance of the final policies. Note that the hierarchical model selects a new
primitive at the start of each walk cycle, approximately 30 environment timesteps, and as such
operates at a lower frequency than the other models. Instead of recording the number of policy
steps, we record the number of environment timestep. This corresponds to the amount of physical
interactions that the agent requires to learn a policy, which is often the bottleneck for simulated and
real world domains.

To analyze the effects of the number of primitives used, we trained MCP models with k = 4, 8, 16, 32
primitives. Figure 4 illustrates the learning curves with varying numbers of primitives. We do
not observe a noticeable performance difference between 4 and 8 primitives. But as the number
of primitives increases, learning efficiency appears to decrease. In the case of 32 primitives, the
dimensionality of w is larger than the dimensionality of the original action space for the humanoid
(28D), which diminishes some of the benefits of the dimensionality reduction provided by the
primitives.

When transferring primitives to new tasks, we train a new gating function for composing the primitives
for the new task while keeping the parameters of the primitives fixed. To test the effects of this design
decision, we compare the performance of policies on transfer tasks where only the gating function is
trained for the new task (Train Gating), and policies where both the gating function and primitives
are trained jointly on the transfer tasks (Train Gating + Prims). Figure 8 compares learning curves for
fixing or finetuning the primitives on various transfer tasks. Overall, the performance of fixing vs
finetuning the primitives lead to similar performance on most tasks. Fixing the primitives appears to
lead to more significant improvements on harder tasks, such as those with the humanoid. Since no
reference motions are used during training on the transfer tasks, finetuning the primitives tend to lead
to more unnatural behaviors.

Figure 8: Learning curves comparing policies where only the gating function is trained for the
transfer tasks, while keeping the parameters of the primitives fixed, and policies where both the gating
function and primitives are trained for the new tasks. Overall, these different design decisions show
similar performance on most tasks.

C Reference Motions

During pre-training, the primitives are trained by imitating a corpus of reference motions. The biped
and humanoid share the same set of reference motions, consisting of mocap clips of walking and
turning motions collected from a publicly available database [38]. In total, 230 seconds of motion
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Figure 9: Learning curves of the various models when applied to transfer tasks. MCP improves
learning speed and performance on challenging tasks (e.g. carry and dribble), and is the only method
that succeeds on the most difficult task (Dribble: T-Rex).

Environment Scratch Finetune Hierarchical Option-Critic MOE Latent Space MCP (Ours)
Heading: Biped 0.927± 0.032 0.970± 0.002 0.834± 0.001 0.952± 0.012 0.918± 0.002 0.970± 0.001 0.976± 0.002
Heading: Humanoid 0.965± 0.010 0.975± 0.008 0.681± 0.006 0.958± 0.001 0.857± 0.018 0.969± 0.002 0.970± 0.003
Heading: T-Rex 0.840± 0.003 0.953± 0.004 − 0.830± 0.004 0.672± 0.011 0.686± 0.003 0.932± 0.007
Carry: Biped 0.027± 0.035 0.324± 0.014 0.001± 0.002 0.346± 0.011 0.013± 0.013 0.456± 0.031 0.575± 0.032
Dribble: Biped 0.072± 0.012 0.651± 0.025 0.546± 0.024 0.046± 0.008 0.073± 0.021 0.768± 0.012 0.782± 0.008
Dribble: Humanoid 0.076± 0.024 0.598± 0.030 0.198± 0.002 0.058± 0.007 0.043± 0.021 0.751± 0.006 0.805± 0.006
Dribble: T-Rex 0.065± 0.032 0.074± 0.011 − 0.098± 0.013 0.070± 0.017 0.115± 0.013 0.781± 0.021
Holdout: Ant 0.951± 0.093 0.885± 0.062 − − − 0.745± 0.060 0.812± 0.030

Table 2: Performance statistics of different models on transfer tasks.

data is used to train the biped and humanoid. To retarget the humanoid reference motions to the biped,
we simply removed extraneous joints in the upper body (e.g. arms and head). The reference motions
for the T-Rex consist of artist generated keyframe animations. Due to the cost of manually authored
animations, the T-Rex is trained with substantially less motion data than the other characters. In total,
11 seconds of motion data is used to train the T-Rex. The T-Rex motions include 1 forward walk, 2
left turns, and 2 right turns. Despite having access to only a small corpus of reference motions, MCP
is nonetheless able to learn a flexible set of primitives that enables the complex T-Rex character to
perform challenging tasks.

D Transfer Tasks

Heading: First we consider a simple heading task, where the objective is for the character to move
in a target heading direction θ̂t. The heading is changed every timestep by applying a random pertur-
bation θ̂t = θ̂t−1 +∇θt sampled from a uniform distribution∇θt ∼ Uniform(−0.15rad, 0.15rad).
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Property Biped Humanoid T-Rex
Links 12 13 20
Total Mass (kg) 42 45 54.5
Height (m) 1.34 1.62 1.66
Degrees-of-Freedom 23 34 55
State Features 105 196 261
Action Parameters 17 28 49

Table 3: Properties of the characters. Table 4: Learning curves of MCP with
different numbers of primitives k.

The goal gt = (cos(θ̂t),−sin(θ̂t)) encodes the heading as a unit vector along the horizontal plane.
The reward rt encourages the character to follow the target heading, and is computed according to

rt = exp
(
−4 (û · vcom − v̂)

2
)
.

Here, (·) denotes the dot product, vcom represents the character’s center-of-mass (COM) velocity
along the horizontal plane, v̂ = 1m/s represents the target speed that the character should travel in
along the target direction û = (cos(θ̂t),−sin(θ̂t)).

Carry: To evaluate our method’s performance on long horizon tasks, we consider a mobile ma-
nipulation task, where the goal is for the character to move a box from a source location to a target
location. The task can be decomposed into a sequence of subtasks, where the character must first
pickup the object from the source location, before carrying it to the target location and placing it
on the table. To enable the character to carry the box, when the character makes contact with the
box at the source location with a specific link (e.g. torso), a virtual joint is created that attaches
the box to the character. Once the box has been placed at the target location, the joint is detached.
The box has a mass of 5kg and is initialized to a random source location at a distance of [0m, 10m]
from the character. The target is initialized to a distance [0m, 10m] from the source. The goal
gt = (xtar, qtar, xsrc, qsrc, xb, qb, vb, ωb) encodes the target table’s position xtar and orientation
qtar as represented as a quaternion, the source table’s position xsrc and orientation qsrc, and box’s
position xb, orientation qb, linear velocity vb, and angular velocity ωb. The reward function consists
of terms that encourage the character to move towards the box, as well as to move the box towards
the target,

rt = wcvrcvt + wcprcpt + wbvrbvt + wbprbpt ,

rcvt encourages the character to move towards the box, while rcpt encourages the character to stay
near the box,

rcvt = exp
(
−1.5 min (0, ub · vcom − v̂)

2
)

rcpt = exp
(
−0.25 ||xcom − xb||2

)
.

ub represents the unit vector pointing in the direction of the box with respect to the character’s COM,
vcom is the COM velocity of the character, v̂ = 1m/s is the target speed, xcom is the COM position,
and xb is the box’s position. All quantities are expressed along the horizontal plane. Similarly, rbvt
and rbpt encourages the character to move the box towards the target,

rbvt = exp
(
−1 min (0, utar · vb − v̂)

2
)

rbpt = exp
(
−0.5 ||xb − xtar||2

)
.

utar represents the unit vector pointing in the direction of the target with respect to the box, vb is the
velocity of the box, and xtar is the target location. The weights for the reward terms are specified
according to (wcv, wcp, wbv, wbp) = (0.1, 0.2, 0.3, 0.4).
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Dribble: This task poses a challenging combination of locomotion and object manipulation, where
the goal is for the character to move a soccer ball to a target location. Since the policy does not have
direct control over the ball, it must rely on complex contact dynamics in order to manipulate the
movement of the ball while also maintaining balance. The ball is randomly initialized at a distance
of [0m, 10m] from the character, and the target is initialized to a distance of [0m, 10m] from the
ball. The goal gt = (xtar, xb, qb, vb, ωb) encodes the target location xtar, and ball’s position xb,
orientation qb, linear velocity vb, and angular velocity ωb. The reward function for this task follows a
similar structure as the reward for the carry task, consisting of terms that encourage the character to
move towards the ball, as well as to move the ball towards the target,

rt = wcvrcvt + wcprcpt + wbvrbvt + wbprbpt ,

rcvt encourages the character to move towards the ball, while rcpt encourages the character to stay
near the ball,

rcvt = exp
(
−1.5 min (0, ub · vcom − v̂)

2
)

rcpt = exp
(
−0.5 ||xcom − xb||2

)
.

ub represents the unit vector pointing in the direction of the ball with respect to the character’s COM,
vcom is the character’s COM velocity, v̂ = 1m/s is the target speed, xcom is the COM position, and
xb is the ball’s position. Similarly, rbvt and rbpt encourages the character to move the ball towards the
target,

rbvt = exp
(
−1 min (0, utar · vb − v̂)

2
)

rbpt = exp
(
−0.5 ||xb − xtar||2

)
.

utar represents the unit vector pointing in the direction of the target with respect to the ball, vb is the
velocity of the ball, and xtar is the target location. The weights for the reward terms are specified
according to (wcv, wcp, wbv, wbp) = (0.1, 0.1, 0.3, 0.5).

Holdout: The holdout task is based on the standard Gym Ant-v3 environment. The goal
gt =

(
cos(θ̂), sin(θ̂)

)
specifies a two-dimensional vector that represents the target direction θ̂ that the

character should travel in. The reward function is similar to that of the standard Ant-v3 environment:

rt = wforwardrforward
t + whealthyrhealthy

t + wcontrolrcontrol
t + wcontactrcontact

t ,

but the forward reward rforwardt is modified to reflect the target direction û =
(

cos(θ̂), sin(θ̂)
)

:

rforward
t = û · vcom

where vcom represents the character’s COM velocity along the horizontal plane. The weights of the
reward terms are specified according to

(
wforward, whealthy, wcontrol, wcontact

)
= (1.0, 1.0, 0.5, 0.0005).

During pre-training, the policies are trained with directions θ̂ ∈ [0, 3/2π]. During transfer, the
policies are trained with directions sampled from a holdout set θ̂ ∈ [3/2π, 2π].

E Model Setup

All models are trained using proximal policy optimization (PPO) [37], except for the option-critic
model, which follows the update rules proposed by Bacon et al. [2]. A discount factor of γ = 0.95
is used during pre-training, and γ = 0.99 is used for the transfer tasks. The value functions for all
models are trained using multi-step returns with TD(λ) [40]. The advantages for policy gradient
calculations are computed using the generalized advantage estimator GAE(λ) [36]. We detail the
hyperparmater settings for each model in the following sections.

E.1 MCP

The MCP model follows the architecture detailed in Figure 3. The value function V (s, g) is modeled
with a fully-connected network with 1024 and 512 hidden units, followed by a linear output unit.
Hyperparameter settings are available in Table 5.
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Parameter Biped Humanoid T-Rex
k Primitives 8 8 8
π Stepsize (Pre-Train) 2× 10−5 1× 10−5 1× 10−5

π Stepsize (Transfer) 5× 10−5 5× 10−5 5× 10−5

V Stepsize 1× 10−2 1× 10−2 1× 10−2

Batch Size 4096 4096 4096
Minibatch Size 256 256 256
SGD Momentum 0.9 0.9 0.9
TD(λ) 0.95 0.95 0.95
GAE(λ) 0.95 0.95 0.95
PPO Clip Threshold 0.02 0.02 0.02

Table 5: MCP model hyperparamters.
E.2 Scratch

As a baseline, we train a model from scratch for each transfer task. The policy network consists of two
fully-connected layers with 1024 and 512 ReLU units, followed by a linear output layer that outputs
the mean of a Gaussian distribution µ(s, g). The covariance matrix is represented by a fixed diagonal
matrix Σ = diag(σ1, σ2, ...) with manually specified values for σi. The value function follows a
similar architecture, but with a single linear output unit. Hyperparameter settings are available in
Table 6.

Parameter Biped Humanoid T-Rex
π Stepsize 2.5× 10−6 2.5× 10−6 1× 10−6

V Stepsize 1× 10−2 1× 10−2 1× 10−2

Batch Size 4096 4096 4096
Minibatch Size 256 256 256
SGD Momentum 0.9 0.9 0.9
TD(λ) 0.95 0.95 0.95
GAE(λ) 0.95 0.95 0.95
PPO Clip Threshold 0.02 0.02 0.02

Table 6: Scratch model hyperparamters.

E.3 Finetuning

The finetuning model is first pre-trained to imitate a reference motion, and then finetuned on the
transfer tasks. The network architecture is identical to the scratch model. Pre-training is done using
the motion imitation approach proposed by Peng et al. [32]. When transferring to tasks with additional
goal inputs g that are not present during training, the networks are augmented with additional inputs
using the input injection method from Berseth et al. [3], which adds additional inputs to the network
without modifying the initial behavior of the model. Hyperparameter settings are available in Table 7.

Parameter Biped Humanoid T-Rex
π Stepsize 2.5× 10−6 2.5× 10−6 1× 10−6

V Stepsize 1× 10−2 1× 10−2 1× 10−2

Batch Size 4096 4096 4096
Minibatch Size 256 256 256
SGD Momentum 0.9 0.9 0.9
TD(λ) 0.95 0.95 0.95
GAE(λ) 0.95 0.95 0.95
PPO Clip Threshold 0.02 0.02 0.02

Table 7: Finetune model hyperparamters.
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E.4 Hierarchical

The hierarchical model consists of a gating function w(s, g) that specifies the probability of activating
a particular low-level primitive πi(a|s) from a discrete set of primitives. To enable the primitives to be
transferable between tasks with different goal representations, the hierarchical model follows a similar
asymmetric architecture, where the primitives have access only to the state. During pre-training, each
primitive is trained to imitate a different reference motion. All experiments use the same set of 7
primitives, including 1 primitive trained to walk forwards, 3 primitives trained to turn right at different
rates, and 3 primitives trained to turn left at different rates. Once the primitives have been trained,
their parameters are kept fixed, while a gating function is trained to sequence the primitives for each
transfer task. The gating function selects a new primitive every walk cycle, which has a duration
of approximately 1 second, the equivalent of about 30 timesteps. Each primitive is modeled using
a separate network with a similar network architecture as the scratch model. The gating function
is modeled with two fully-connected layers consisting of 1024 and 512 ReLU units, followed by a
softmax output layer that specifies the probability of activating each primitive. The gating function is
also trained with PPO. Hyperparameter settings are available in Table 8.

Parameter Biped Humanoid
k Primitives 7 7
π Stepsize 1× 10−3 1× 10−3

V Stepsize 1× 10−2 1× 10−2

Batch Size 4096 4096
Minibatch Size 256 256
SGD Momentum 0.9 0.9
TD(λ) 0.95 0.95
GAE(λ) 0.95 0.95
PPO Clip Threshold 0.02 0.02

Table 8: Hierarchical model hyperparamters.

E.5 Option-Critic

The option-critic model adapts the original implementation from Bacon et al. [2] to continuous action
spaces. During pre-training, the model is trained end-to-end with the motion imitation tasks. Unlike
the hierarchical model, the options (i.e. primitives) are not assigned to a particular skills, and instead
specialization is left to emerge automatically from the options framework. To enable transfer of
options between different tasks, we also use an asymmetric architecture, where the intra-option
policies πω(a|s) and termination functions βω(s) receive only the state as input. The policy over
options πΩ(ω|s, g), as defined by the option value function QΩ(s, g, ω), has access to both the state
and goal. When transferring the options to new tasks, the parameters of πω and βω are kept fixed,
and a new option value function QΩ is trained for the new task. We have also experimented with
finetuning πω and βω on the transfer tasks, but did not observe noticeable performance improvements.
Furthermore, joint finetuning often results in catastrophic, where the options degrade to producing
highly unnatural behaviours. Therefore, all experiments will have πω and βω fixed when training on
the transfer tasks. Hyperparameter settings are available in Table 9.

Parameter Biped Humanoid T-Rex
k Options 8 8 8
π Stepsize 2.5× 10−6 2.5× 10−6 1× 10−6

βω Stepsize 2.5× 10−6 2.5× 10−6 1× 10−6

QΩ Stepsize 1× 10−2 1× 10−2 1× 10−2

Batch Size 256 256 256
SGD Momentum 0.9 0.9 0.9
ξ Termination Cost 0.01 0.01 0.01

Table 9: Option-critic model hyperparamters.
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E.6 Mixture-of-Experts

The mixture-of-experts (MOE) model is implemented according to Equation 1. The policy consists
of a set of primitives πi(a|s) and gating function w(s, g) that specifies the probability of activating
each primitive. To facilitate transfer, the primitives only receives the state as input, while the gating
function receives both the state and the goal. The primitives are first pre-trained with the motion
imitation task, and when transferring to new tasks, the parameters of the primitives are kept fixed,
while a new gating function is trained for each transfer task. Therefore, MOE is analogous to MCP
where only a single primitive is activated at each timestep. The gating function and the primitives are
modeled by separate networks. The network for the gating function consists of 1024 and 512 ReLU
units, followed by a softmax output layer that specifies wi(s, g) for each primitive. The primitives
are modeled jointly by a single network consisting of 1024 and 512 ReLU units, followed separate
linear output layers for each primitives that specifies the parameters of a Gaussian. As such, the MOE
model’s action distribution is modeled as a Gaussian mixture model. Hyperparameter settings are
available in Table 10.

Parameter Biped Humanoid T-Rex
k Primitives 8 8 8
π Stepsize 1× 10−5 5× 10−6 2× 10−6

V Stepsize 1× 10−2 1× 10−2 1× 10−2

Batch Size 4096 4096 4096
Minibatch Size 256 256 256
SGD Momentum 0.9 0.9 0.9
TD(λ) 0.95 0.95 0.95
GAE(λ) 0.95 0.95 0.95
PPO Clip Threshold 0.02 0.02 0.02

Table 10: Mixture-of-experts model hyperparamters.
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E.7 Latent Space

The latent space model follows a similar architecture as Merel et al. [26], where an encoder q(wt|gt)
first maps the goal gt to a distribution over latent variables wt. wt is then sampled from the latent
distribution and provided to the policy as input π(at|st, wt). The latent distribution is modeled as
an IID Gaussian q(wt|gt) = N (µq(gt),Σq(gt)) with mean µq(wt) and diagonal covariance matrix
Σq(gt). Similar to VAEs, we include a term in the objective that regularizes the latent distribution
against a standard Gaussian prior p0(wt) = N (0, I),

arg max
π,q

Eτ∼pπ,q(τ)

[
T∑
t=0

γtrt

]
+ β Egt∼p(gt) [DKL [q(wt|gt)||p0(wt)]] (12)

Here, β is a manually specified coefficient for the KL regularizer. The encoder and policy are trained
end-to-end using the reparameterization trick [20].

The latent space model follows a similar pre-training procedure as the MCP model, where the model
is trained to imitate a corpus of reference motions with the goal gt = (ŝt+1, ŝt+2) specifying the
target states for the next two timesteps. The encoder is therefore trained to embed short motion
clips into the latent space. After pre-training, the parameters of π are frozen, and a new encoder
q′(wt|st, gt) is trained for each transfer task. Following the architectures from previous work [16, 26],
the encoder used during pre-training only receives the goal gt as input, while the encoder used in the
transfer tasks receives both the state st and goal gt as input, since additional information from the
state may be necessary when performing the new tasks.

The policy network follows a similar architecture as the ones used by the finetuning model, consisting
of two hidden with 1024 and 512 ReLU units followed by a linear output layer. The encoder used
during pre-training consists of 256 and 128 hidden units, followed by a linear output layer for µq(gt)
and Σq(gt). The size of the encoding is set to be 8D, the same dimensionality as the weights of the
gating function from the MCP model. The encoder used in the transfer tasks is modeled by a larger
network with 1024 and 512 hidden units. Hyperparameter settings are available in Table 11.

Parameter Biped Humanoid T-Rex
w Latent Size 8 8 8
π Stepsize (Pre-Train) 5× 10−6 2.5× 10−6 1× 10−6

π Stepsize (Transfer) 5× 10−5 5× 10−5 5× 10−5

V Stepsize 1× 10−2 1× 10−2 1× 10−2

Batch Size 4096 4096 4096
Minibatch Size 256 256 256
SGD Momentum 0.9 0.9 0.9
TD(λ) 0.95 0.95 0.95
GAE(λ) 0.95 0.95 0.95
PPO Clip Threshold 0.02 0.02 0.02
β KL Regularizer 1× 10−4 1× 10−4 1× 10−4

Table 11: Latent space model hyperparamters.
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