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Abstract 

Modeling human motor control and predicting how humans will move in novel environments is a grand scientific 
challenge. Researchers in the fields of biomechanics and motor control have proposed and evaluated motor control 
models via neuromechanical simulations, which produce physically correct motions of a musculoskeletal model. Typi-
cally, researchers have developed control models that encode physiologically plausible motor control hypotheses and 
compared the resulting simulation behaviors to measurable human motion data. While such plausible control models 
were able to simulate and explain many basic locomotion behaviors (e.g. walking, running, and climbing stairs), mod-
eling higher layer controls (e.g. processing environment cues, planning long-term motion strategies, and coordinating 
basic motor skills to navigate in dynamic and complex environments) remains a challenge. Recent advances in deep 
reinforcement learning lay a foundation for modeling these complex control processes and controlling a diverse rep-
ertoire of human movement; however, reinforcement learning has been rarely applied in neuromechanical simulation 
to model human control. In this paper, we review the current state of neuromechanical simulations, along with the 
fundamentals of reinforcement learning, as it applies to human locomotion. We also present a scientific competition 
and accompanying software platform, which we have organized to accelerate the use of reinforcement learning in 
neuromechanical simulations. This “Learn to Move” competition was an official competition at the NeurIPS conference 
from 2017 to 2019 and attracted over 1300 teams from around the world. Top teams adapted state-of-the-art deep 
reinforcement learning techniques and produced motions, such as quick turning and walk-to-stand transitions, that 
have not been demonstrated before in neuromechanical simulations without utilizing reference motion data. We 
close with a discussion of future opportunities at the intersection of human movement simulation and reinforcement 
learning and our plans to extend the Learn to Move competition to further facilitate interdisciplinary collaboration in 
modeling human motor control for biomechanics and rehabilitation research
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Introduction
Predictive neuromechanical simulations can produce 
motions without directly using experimental motion 
data. If the produced motions reliably match how 
humans move in novel situations, predictive simula-
tions could be used to accelerate research on assis-
tive devices, rehabilitation treatments, and physical 
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training. Neuromechanical models represent the 
neuro-musculo-skeletal dynamics of the human body 
and can be simulated based on physical laws to pre-
dict body motions (Fig.  1). Although advancements in 
musculoskeletal modeling [1, 2] and physics simula-
tion engines [3–5] allow us to simulate and analyze 
observed human motions, understanding and modeling 
human motor control remains a hurdle for accurately 
predicting motions. In particular, it is very difficult to 
measure and interpret the biological neural circuits 
that underlie human motor control. To overcome this 
challenge, one can propose control models based on 
key features observed in animals and humans and eval-
uate these models in neuromechanical simulations by 
comparing the simulation results to human data. With 
such physiologically plausible neuromechanical control 
models, today we can simulate many aspects of human 
motions, such as steady walking, in a predictive manner 
[6–8]. Despite this progress, developing controllers for 
more complex tasks, such as adapting to dynamic envi-
ronments and those that require long-term planning, 
remains a challenge.

Training artificial neural networks using deep rein-
forcement learning (RL) in neuromechanical simula-
tions may allow us to overcome some of the limitations 
in current control models. In contrast to developing a 
control model that captures certain physiological fea-
tures and then running simulations to evaluate the 
results, deep RL can be thought of as training control-
lers that can produce motions of interest, resulting in 
controllers that are often treated as a black-box due to 
their complexity. Recent breakthroughs in deep learn-
ing make it possible to develop controllers with high-
dimensional inputs and outputs that are applicable 
to human musculoskeletal models. Despite the dis-
crepancy between artificial and biological neural net-
works, such means of developing versatile controllers 
could be useful in investigating human motor control 
[9]. For instance, a black-box controller that has been 
validated to produce human-like neuromechanical 
simulations could be useful in predicting responses to 
assistive devices or therapies like targeted strength-
training. Or one could gain some insight about human 
motor control by training a controller with deep RL in 
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Fig. 1 Neuromechanical simulation. A neuromechanical simulation consists of a control model and a musculoskeletal model that represent the 
central nervous system and the body, respectively. The control and musculoskeletal models are forward simulated based on physical laws to 
produce movements
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certain conditions (i.e., objective functions, simula-
tion environment, etc.) and by analyzing the control-
ler. One could also train controllers to mimic human 
motion (e.g., using imitation learning, where a control-
ler is trained to replicate behaviors demonstrated by 
an expert [10]) or integrate an existing neuromechani-
cal control model with artificial neural networks to 
study certain aspects of human motor control. While 
there are recent studies that used deep RL to produce 
human-like motions with musculoskeletal models [11, 
12], little effort has been made to study the underlying 
control.

We organized the Learn to Move competition series 
to facilitate developing control models with advanced 
deep RL techniques in neuromechanical simulation. It 
has been an official competition at the NeurIPS con-
ference from 2017 to 2019. We provided the neuro-
mechanical simulation environment, OpenSim-RL, 
and participants developed locomotion controllers for 
a human musculoskeletal model. In the most recent 
competition, NeurIPS 2019: Learn to Move - Walk 
Around, the top teams adapted state-of-the-art deep 
RL techniques and successfully controlled a 3D human 
musculoskeletal model to follow target velocities by 
changing walking speed and direction as well as tran-
sitioning between walking and standing. Some of these 
locomotion behaviors were demonstrated in neurome-
chanical simulations for the first time without using 
reference motion data. While the solutions were not 
explicitly designed to model human learning or con-
trol, they provide means of developing control models 
that are capable of producing complex motions.

This paper reviews neuromechanical simulations 
and deep RL, with a focus on the materials relevant 
to modeling the control of human locomotion. First, 
we provide background on neuromechanical simula-
tions of human locomotion and discuss how to evalu-
ate their physiological plausibility. We also introduce 
deep RL approaches for continuous control problems 
(the type of problem we must solve to predict human 
movement) and review their use in developing locomo-
tion controllers. Then, we present the Learn to Move 
competition and discuss the successful approaches, 
simulation results, and their implications for locomo-
tion research. We conclude by suggesting promising 
future directions for the field and outline our plan to 
extend the Learn to Move competition. Our goal with 
this review is to provide a primer for researchers who 
want to apply deep RL approaches to study control of 
human movement in neuromechanical simulation and 
to demonstrate how deep RL is a powerful comple-
ment to traditional physiologically plausible control 
models.

Background on neuromechanical simulations 
of human locomotion
This section provides background on neuromechanical 
simulations of human locomotion. We first present the 
building blocks of musculoskeletal simulations and their 
use in studying human motion. We next review the bio-
logical control hypotheses and neuromechanical control 
models that embed those hypotheses. We also briefly 
cover studies in computer graphics that have developed 
locomotion controllers for human characters. We close 
this section by discussing the means of evaluating the 
plausibility of control models and the limitations of cur-
rent approaches.

Musculoskeletal simulations
A musculoskeletal model typically represents a human 
body with rigid segments and muscle-tendon actuators 
[14, 16, 17] (Fig. 2a). The skeletal system is often modeled 
by rigid segments connected by rotational joints. Hill-
type muscle models [18] are commonly used to actuate 
the joints, capturing the dynamics of biological muscles, 
including both active and passive contractile elements 
[19–22] (Fig.  2b). Hill-type muscle models can be used 
with models of metabolic energy consumption [23–25] 
and muscle fatigue [26–28] to estimate these quantities 
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Fig. 2 Musculoskeletal models for studying human movement. 
a Models implemented in OpenSim [1] for a range of studies: 
lower-limb muscle activity in gait [13], shoulder muscle activity in 
upper-limb movements [14], and knee contact loads for various 
motions [15]. b A Hill-type muscle model typically consists of a 
contractile element (CE), a parallel elastic element (PE), and a series 
elastic element (SE). The contractile element actively produces 
contractile forces that depend on its length and velocity and are 
proportional to the excitation signal. The passive elements act as 
non-linear springs where the force depends on their length
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in simulations. Musculoskeletal parameter values are 
determined for average humans based on measurements 
from a large number of people and cadavers [29–32] 
and can be customized to match an individual’s height, 
weight, or CT and MRI scan data [33, 34]. OpenSim [1], 
which is the basis of the OpenSim-RL package [35] used 
in the Learn to Move competition, is an open-source 
software package broadly used in the biomechanics com-
munity (e.g., it has about 60,000 unique user downloads 
as of 2021 [36]) to simulate musculoskeletal dynamics.

Musculoskeletal simulations have been widely used 
to analyze recorded human motion. In one common 
approach, muscle activation patterns are found through 
various computational methods to enable a musculoskel-
etal model to track reference motion data, such as motion 
capture data and ground reaction forces, while achieving 
defined objectives, like minimizing muscle effort [37–39]. 
The resulting simulation estimates body states, such 
as individual muscle forces, that are difficult to directly 
measure with an experiment. Such an approach has been 
validated for human walking and running by comparing 
the simulated muscle activations with recorded electro-
myography data [40, 41], and for animal locomotion by 
comparing simulated muscle forces, activation levels, 
and muscle-tendon length changes with in  vivo meas-
urements during cat locomotion [42]. These motion 
tracking approaches have been used to analyze human 
locomotion [37, 39], to estimate body state in real-time 
to control assistive devices [43, 44], and to predict effects 
of exoskeleton assistance and surgical interventions on 
muscle coordination [45, 46]. While these simulations 
that track reference data provide a powerful tool to ana-
lyze recorded motions, they do not produce new motions 
and thus cannot predict movement in novel scenarios.

Alternatively, musculoskeletal simulations can produce 
motions without reference motion data using trajectory 
optimization methods [47]. This approach finds muscle 
activation patterns that produce a target motion through 
trajectory optimization with a musculoskeletal model 
based on an assumption that the target motion is well 
optimized for a specific objective. Thus, this approach has 
been successful in producing well-practiced motor tasks, 
such as normal walking and running [48, 49] and pro-
vides insights into the optimal gaits for different objec-
tives [26, 27], biomechanical features [50], and assistive 
devices [51]. However, it is not straightforward to apply 
this approach to behaviors that are not well trained and 
thus functionally suboptimal. For instance, people ini-
tially walk inefficiently in lower limb exoskeletons and 
adapt to more energy optimal gaits over days and weeks 
[52]; therefore, trajectory optimization with an objective 
such as energy minimization likely would not predict 
the initial gaits. These functionally suboptimal behaviors 

in humans are produced by the nervous system that is 
probably optimized for typical motions, such as nor-
mal walking, and is also limited by physiological control 
constraints, such as neural transmission delays and lim-
ited sensory information. A better representation of the 
underlying controller may be necessary to predict these 
kinds of emergent behaviors that depart from typical 
minimum effort optimal behaviors.

Neuromechanical control models and simulations
A neuromechanical model includes a representation of a 
neural controller in addition to the musculoskeletal sys-
tem (Fig.  1). To demonstrate that a controller can pro-
duce stable locomotion, neuromechanical models are 
typically tested in a forward physics simulation for mul-
tiple steps while dynamically interacting with the envi-
ronment (e.g., the ground and the gravitational force). 
Neuromechanical simulations have been used to test gait 
assistive devices before developing hardware [53, 54] and 
to understand how changes in musculoskeletal properties 
affect walking performance [7, 28]. Moreover, the control 
model implemented in neuromechanical simulations can 
be directly used to control bipedal robots [55–57] and 
assistive devices [53, 58, 59].

Modeling human motor control is crucial for a predic-
tive neuromechanical simulation. However, most of our 
current understanding of human locomotion control is 
extrapolated from experimental studies of simpler ani-
mals [60, 61] as it is extremely difficult to measure and 
interpret the biological neural circuits. Therefore, human 
locomotion control models have been proposed based 
on a few structural and functional control hypotheses 
that are shared in many animals (Fig.  3). First, locomo-
tion in many animals can be interpreted as a hierarchical 
structure with two layers, where the lower layer generates 
basic motor patterns and the higher layer sends com-
mands to the lower layer to modulate the basic patterns 
[60]. It has been shown in some vertebrates, including 
cats and lampreys, that the neural circuitry of the spinal 
cord, disconnected from the brain, can produce stereo-
typical locomotion behaviors and can be modulated by 
electrical stimulation to change speed, direction and gait 
[62, 63]. Second, the lower layer seems to consist of two 
control mechanisms: reflexes [64, 65] and central pattern 
generators (CPGs) [66, 67]. In engineering terms, reflexes 
and CPGs roughly correspond to feedback and feedfor-
ward control, respectively. Muscle synergies, where a 
single pathway co-activates multiple muscles, have also 
been proposed as a lower layer control mechanism that 
reduces the degrees of freedom for complex control tasks 
[68, 69]. Lastly, there is a consensus that humans use 
minimum effort to conduct well-practiced motor tasks, 
such as walking [70, 71]. This consensus provides a basis 
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for using energy or fatigue optimization [26–28] as a 
principled means of finding control parameter values.

Most neuromechanical control models are focused 
on lower layer control using spinal control mechanisms, 
such as CPGs and reflexes. CPG-based locomotion con-
trollers consist of both CPGs and simple reflexes, where 
the CPGs, often modeled as mutually inhibiting neurons 

[72], generate the basic muscle excitation patterns. These 
CPG-based models [8, 73–77] demonstrated that stable 
locomotion can emerge from the entrainment between 
CPGs and the musculoskeletal system, which are linked 
by sensory feedback and joint actuation. A CPG-based 
model that consists of 125 control parameters produced 
walking and running with a 3D musculoskeletal model 
with 60 muscles to walk and run [75]. CPG-based models 
also have been integrated with different control mecha-
nisms, such as muscle synergies [8, 76, 77] and various 
sensory feedback circuits [74, 76]. On the other hand, 
reflex-based control models consist of simple feedback 
circuits without any temporal characteristics and demon-
strate that CPGs are not necessary for producing stable 
locomotion. Reflex-based models [6, 20, 78–80] mostly 
use simple feedback laws based on sensory data accessi-
ble at the spinal cord such as proprioception (e.g., mus-
cle length, speed and force) and cutaneous (e.g., foot 
contact and pressure) data [61, 65]. A reflex-based con-
trol model with 80 control parameters combined with a 
simple higher layer controller that regulates foot place-
ment to maintain balance produced diverse locomotion 
behaviors with a 3D musculoskeletal model with 22 mus-
cles, including walking, running, and climbing stairs and 
slopes [6] and reacted to a range of unexpected perturba-
tions similarly to humans [81] (Fig. 4). Reflex-based con-
trollers also have been combined with CPGs [79] and a 
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Fig. 3 Locomotion control. The locomotion controller of animals 
is generally structured hierarchically with two layers. Reflexes and 
central pattern generators are the basic mechanisms of the lower 
layer controller
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deep neural network that operates as a higher layer con-
troller [80] for more control functions, such as speed and 
terrain adaptation.

Human locomotion simulations for computer graphics
A number of controllers have been developed in com-
puter graphics to automate the process of generating 
human-like locomotion for computer characters [82–86]. 
A variety of techniques have been proposed for simu-
lating common behaviors, such as walking and running 
[87–90]. Reference motions, such as motion capture data, 
were often used in the development process to produce 
more natural behaviors [91–94]. Musculoskeletal models 
also have been used to achieve naturalistic motions [95–
97], which makes them very close to neuromechanical 
simulations. The focus of these studies is producing nat-
ural-looking motions rather than accurately representing 
the underlying biological system. However, the computer 
graphics studies and physiologically plausible neurome-
chanical simulations may converge as they progress to 
produce and model a wide variety of human motions.

Plausibility and limitations of control models
The plausibility of a neuromechanical control model can 
be assessed by the resulting simulation behavior. First 
of all, generating stable locomotion in neuromechani-
cal simulations is a challenging control problem [61, 98] 
and thus has implications for the controller. For instance, 
a control model that cannot produce stable walking 
with physiological properties, such as nonlinear muscle 
dynamics and neural transmission delays, is likely miss-
ing some important aspects of human control [99]. Once 
motions are successfully simulated, they can be com-
pared to measurable human data. We can say a model 
that produces walking with human-like kinematics, 
dynamics, and muscle activations is more plausible than 
one that does not. A model can be further compared with 
human control by evaluating its reactions to unexpected 
disturbances [81] and its adaptations in new conditions, 
such as musculoskeletal changes [7, 28], external assis-
tance [53, 54], and different terrains [6].

We can also assess the plausibility of control features 
that are encoded in a model. It is plausible for a control 
model to use sensory data that are known to be used 
in human locomotion [61, 65] and to work with known 
constraints, such as neural transmission delays. Models 
developed based on control hypotheses proposed by neu-
roscientists, such as CPGs and reflexes, partially inherit 
the plausibility of the corresponding hypotheses. Show-
ing that human-like behaviors emerge from optimality 
principles that regulate human movements, such as mini-
mum metabolic energy or muscle fatigue, also increases 
the plausibility of the control models [26–28].

Existing neuromechanical control models are mostly 
limited to modeling the lower layer control and produc-
ing steady locomotion behaviors. Most aspects of the 
motor learning process and the higher layer control are 
thus missing in current neuromechanical models. Motor 
learning occurs in daily life when acquiring new motor 
skills or adapting to environmental changes. For exam-
ple, the locomotion control system adapts when walking 
on a slippery surface, moving a heavy load, wearing an 
exoskeleton [52, 100], and in experimentally constructed 
environments such as on a split-belt treadmill [101, 102] 
and with perturbation forces [103, 104]. The higher layer 
control processes environment cues, plans long-term 
motion strategies, and coordinates basic motor skills to 
navigate in dynamic and complex environments. While 
we will discuss other ideas for explicitly modeling motor 
learning and higher layer control in neuromechanical 
simulations in the Future directions section, deep RL may 
be an effective approach to developing controllers for 
challenging environments and motions.

Deep reinforcement learning for motor control
This section highlights the concepts from deep reinforce-
ment learning relevant to developing models for motor 
control. We provide a brief overview of the terminology 
and problem formulations of RL and then cover selected 
state-of-the-art deep RL algorithms that are relevant to 
successful solutions in the Learn to Move competition. 
We also review studies that used deep RL to control 
human locomotion in physics-based simulation.

Deep reinforcement learning
Reinforcement learning is a machine learning paradigm 
for solving decision-making problems. The objective is to 
learn an optimal policy π that enables an agent to maxi-
mize its cumulative reward through interactions with its 
environment [105] (Fig.  5). For example, in the case of 
the Learn to Move competition, the environment was 
the musculoskeletal model and physics-based simula-
tion environment, and higher cumulative rewards were 
given to solutions that better followed target velocities 
with lower muscle effort. Participants developed agents, 
which consist of a policy that controls the musculoskel-
etal model and a learning algorithm that trains the pol-
icy. For the general RL problem, at each timestep t, the 
agent receives an observation ot (perception and proprio-
ception data in the case of our competition; perception 
data includes information on the target velocities) and 
queries its policy π for an action at (excitation values of 
the muscles in the model) in response to that observa-
tion. An observation ot is the full or partial information 
of the state st of the environment. The policy π(at |ot) can 
be either deterministic or stochastic, where a stochastic 
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policy defines a distribution over actions at given a par-
ticular observation ot [106]. Stochastic policies allow gra-
dients to be computed for non-differentiable objective 
functions [107], such as those computed from the results 
of a neuromechanical simulation, and the gradients can 
be used to update the policies using gradient ascent. The 
agent then applies the action in the environment, result-
ing in a transition to a new state st+1 and a scalar reward 
rt = r(st , at , st+1) . The state transition is determined 
according to the dynamics model ρ(st+1|st , at) . The 
objective for the agent is to learn an optimal policy that 
maximizes its cumulative reward.

One of the crucial design decisions in applying RL to 
a particular problem is the choice of policy representa-
tion. Deep RL is the combination of RL with deep neural 
network function approximators. While a policy can be 
modeled by any class of functions that maps observations 
to actions, the use of deep neural networks to model poli-
cies demonstrated promising results in complex prob-
lems and has led to the emergence of the field of deep RL. 

Policies trained with deep RL methods achieved human-
level performance on many of the 2600 Atari video games 
[108], overtook world champion human players in the 
game of Go [109, 110], and reached the highest league 
in a popular professional computer game that requires 
long-term strategies [111].

State‑of‑the‑art deep RL algorithms used in Learn to Move
Model-free deep RL algorithms (Fig.  6) are widely used 
for continuous control tasks, such as those considered 
in the Learn to Move competition, where the actions 
are continuous values of muscle excitations. Model-free 
algorithms do not learn an explicit dynamics model of 
state transitions; instead, they directly learn a policy to 
maximize the expected return, or reward. In these con-
tinuous control tasks, the policy specifies actions that 
represent continuous quantities such as control forces 
or muscle excitations. Policy gradient algorithms incre-
mentally improve a policy by first estimating the gradi-
ent of the expected return using trajectories collected 
from forward simulations of the policy, and then updat-
ing the policy via gradient ascent [118]. While simple, the 
standard policy gradient update has several drawbacks, 
including stability and sample efficiency. First, the gra-
dient estimator can have high variance, which can lead 
to unstable learning, and a good gradient estimate may 
require a large number of training samples. Algorithms 
such as TRPO [113] and PPO [114] improve the stability 
of policy gradient methods by limiting the change in the 
policy’s behavior after each update step, as measured by 
the relative entropy between the policies [119]. Another 
limitation of policy gradient methods is their low sample 
efficiency. Standard policy gradient algorithms use a new 
batch of data collected with the current policy to esti-
mate a gradient when updating the current policy at each 
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iteration. Thus, each batch of data is used to perform a 
small number of updates, then discarded, and millions 
of samples are often required to solve relatively simple 
tasks. Off-policy gradient algorithms can substantially 
reduce the number of samples required to learn effec-
tive policies by allowing the agent to reuse data collected 
from previous iterations of the algorithm when updating 
the latest policy [115–117]. Off-policy algorithms, such 
as DDPG [115], typically fit a Q-function, Q(s, a), which 
is the expected return of performing an action a in the 
current state s. These methods differentiate the learned 
Q-function to approximate the policy gradient, then use 
it to update the policy. More recent off-policy methods, 
such as TD3 and SAC, build on this approach and pro-
pose several modifications that further improve sample 
efficiency and stability.

Deep RL for human locomotion control
Human motion simulation studies have used vari-
ous forms of RL (Fig.  6). A number of works in neuro-
mechanical simulation [6, 75] and computer graphics 
studies [95, 96] reviewed in the Background on neurome-
chanical simulations of human locomotion section used 
policy search methods [120] with derivative-free opti-
mization techniques, such as evolutionary algorithms, 
to tune their controllers. The control parameters are 
optimized by repeatedly running a simulation trial with 
a set of control parameters, evaluating the objective func-
tion from the simulation result, and updating the control 
parameters using an evolutionary algorithm [121]. This 
optimization approach makes very minimal assumptions 
about the underlying system and can be effective for 
tuning controllers to perform a diverse array of skills [6, 
122]. However, these algorithms often struggle with high 
dimensional parameter spaces (i.e., more than a couple of 
hundred parameters) [123]. Therefore, researchers devel-
oped controllers with a relatively low-dimensional set of 
parameters that could produce desired motions, which 
require a great deal of expertise and human insight. Also, 
the selected set of parameters tend to be specific for par-
ticular skills, limiting the behaviors that can be repro-
duced by the character.

Recently, deep RL techniques have demonstrated 
promising results for character animation, with policy 
optimization methods emerging as the algorithms of 
choice for many of these applications [114, 115, 118]. 
These methods have been effective for training control-
lers that can perform a rich repertoire of skills [10, 124–
127]. One of the advantages of deep RL techniques is the 
ability to learn controllers that operate directly on high-
dimensional, low-level representations of the underlying 
system, thereby reducing the need to manually design 
compact control representations for each skill. These 

methods have also been able to train controllers for 
interacting with complex environments [124, 128, 129], 
as well as for controlling complex musculoskeletal mod-
els [11, 130]. Reference motions continue to play a vital 
role in producing more naturalistic behavior in deep RL 
as a form of deep imitation learning, where the objective 
is designed to train a policy that mimics human motion 
capture data [10, 11, 126] (Fig. 7). As these studies using 
reference motion data show the potential of using deep 
RL methods in developing versatile controllers, it would 
be worth testing various deep RL approaches in neuro-
mechanical simulations.

Learn to Move competition
The potential synergy of neuromechanical simulations 
and deep RL methods in modeling human control moti-
vated us to develop the OpenSim-RL simulation plat-
form and to organize the Learn to Move competition 
series. OpenSim-RL [35] leverages OpenSim to simu-
late musculoskeletal models and OpenAI Gym, a widely 
used RL toolkit [131], to standardize the interface with 
state-of-the-art RL algorithms. OpenSim-RL is open-
source and is provided as a Conda package [132], which 
has been downloaded about 42,000 times from 2017 to 
2019. Training a controller for a human musculoskeletal 
model is a difficult RL problem considering the large-
dimensional observation and action spaces, delayed and 
sparse rewards resulting from the highly non-linear and 
discontinuous dynamics, and the slow simulation of mus-
cle dynamics. Therefore, we organized the Learn to Move 
competition series to crowd-source machine learning 
expertise in developing control models of human loco-
motion. The mission of the competition series is to bridge 
neuroscience, biomechanics, robotics, and machine 
learning to model human motor control.

The Learn to Move competition series was held annu-
ally from 2017 to 2019. It was one of the official compe-
titions at the NeurIPS conference, a major event at the 
intersection of machine learning and computational neu-
roscience. The first competition was NIPS 2017: Learning 
to Run [35, 133], and the task was to develop a control-
ler for a given 2D human musculoskeletal model to run 
as fast as possible while avoiding obstacles. In the second 
competition, NeurIPS 2018: AI for Prosthetics Challenge 
[134], we provided a 3D human musculoskeletal model, 
where one leg was amputated and replaced with a passive 
ankle-foot prosthesis. The task was to develop a walk-
ing controller that could follow velocity commands, the 
magnitude and direction of which varied moderately. 
These two competitions together attracted about 1000 
teams, primarily from the machine learning community, 
and established successful RL techniques which will be 
discussed in the Top solutions and results section. We 
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designed the 2019 competition to build on knowledge 
gained from past competitions. For example, the chal-
lenge in 2018 demonstrated the difficulty of moving from 
2D to 3D. Thus, to focus on controlling maneuvering in 
3D, we designed the target velocity to be more challeng-
ing, while we removed the added challenge of simulating 
movement with a prosthesis. We also refined the reward 
function to encourage more natural human behaviors 
(Appendix - Reward function).

NeurIPS 2019: Learn to Move ‑ Walk Around
Overview
NeurIPS 2019: Learn to Move - Walk Around was held 
online from June 6 to November 29 in 2019. The task was 
to develop a locomotion controller, which was scored 
based on its ability to meet target velocity vectors when 
applied in the provided OpenSim-RL simulation environ-
ment. The environment repository was shared on Github 
[135], the submission and grading were managed using 
the AIcrowd platform [136], and the project homepage 
provided documentation on the environment and the 
competition [137]. Participants were free to develop any 
type of controller that worked in the environment. We 
encouraged approaches other than brute force deep RL 
by providing human gait data sets of walking and running 
[138–140] and a 2D walking controller adapted from 
a reflex-based control model [6] that could be used for 
imitation learning or in developing a hierarchical control 

structure. There were two rounds. The top 50 teams in 
Round 1 were qualified to proceed to Round 2 and to 
participate in a paper submission track. RL experts were 
invited to review the papers based on the novelty of the 
approaches, and we selected the best and finalist papers 
based on the reviews. More details on the competition 
can be found on the competition homepage [136].

In total, 323 teams participated in the competition 
and submitted 1448 solutions. In Round 2, the top three 
teams [141–143] succeeded in completing the task and 
received high scores (mean total rewards larger than 
1300 out of 1500). Five papers were submitted, and we 
selected the best paper [141] along with two more finalist 
papers [142, 143]. The three finalist papers came from the 
top three teams, where the best paper was from the top 
team.

Simulation environment
The OpenSim-RL environment included a physics sim-
ulation of a 3D human musculoskeletal model, target 
velocity commands, a reward system, and a visualization 
of the simulation (Fig. 8). The 3D musculoskeletal model 
had seven segments connected with eight rotational 
joints and actuated by 22 muscles. Each foot segment 
had three contact spheres that dynamically interacted 
with the ground. A user-developed policy could observe 
97-dimensional body sensory data and 242-dimensional 
target velocity map and produced a 22-dimensional 

Walk Run

Cartwheel Spin-kick

Roll Kick-up

Back-flip Front-flip

Fig. 7 Computer graphics characters performing diverse human motions. Dynamic and acrobatic skills learned to mimic motion capture clips with 
RL in physics simulation [10]



Page 10 of 17Song et al. J NeuroEngineering Rehabil          (2021) 18:126 

action containing the muscle excitation signals. The 
reward was designed to give high total rewards for solu-
tions that followed target velocities with minimum mus-
cle effort (Appendix – Reward function). The mean total 
reward of five trials with different target velocities was 
used for ranking.

Top solutions and results
All of the top three teams that succeeded in completing 
the task used deep reinforcement learning [141–143]. 
None of the teams utilized reference motion data for 
training or used domain knowledge in designing the 

policy. The only part of the training process that was spe-
cific to locomotion was using intermediate rewards that 
induced effective gaits or facilitated the training process. 
The top teams used various heuristic RL techniques that 
have been effectively used since the first competition 
[133, 134] and adapted state-of-the-art deep RL training 
algorithms.

Various heuristic RL techniques were used, including 
frame skipping, discretization of the action space, and 
reward shaping. These are practical techniques that con-
strain the problem in certain ways to encourage an agent 
to search successful regions faster in the initial stages of 

HAB

HAD

HFL
GLU

HAM

RF
VAS

BFSH

GAS
SOL TA

action
muscle excitations

...

reward

observation
target

velocity map

minimize
muscle effort

body state

match target
velocity

environment

Controller
(agent/policy)
developed by
participnats

cb

a

Fig. 8 OpenSim-RL environment for the NeurIPS 2019: Learn to Move - Walk Around competition. a A neuromechanical simulation environment 
is designed for a typical RL framework (Fig. 5). The environment took an action as input, simulated a musculoskeletal model for one time-step, and 
provided the resulting reward and observation. The action was excitation signals for the 22 muscles. The reward was designed so that solutions 
following target velocities with minimum muscle effort would achieve high total rewards. The observation consisted of a target velocity map and 
information on the body state. b The environment included a musculoskeletal model that represents the human body. Each leg consisted of four 
rotational joints and 11 muscles. (HAB: hip abductor; HAD: hip adductor; HFL: hip flexor; GLU: glutei, hip extensor; HAM: hamstring, biarticular hip 
extensor and knee flexor; RF: rectus femoris, biarticular hip flexor and knee extensor; VAS: vastii, knee extensor; BFSH: short head of biceps femoris, 
knee flexor; GAS: gastrocnemius, biarticular knee flexor and ankle extensor; SOL: soleus, ankle extensor; TA: tibialis anterior, ankle flexor). c The 
simulation environment provided a real-time visualization of the simulation to users. The global map of target velocities is shown at the top-left. The 
bottom-left shows its local map, which is part of the input to the controller. The right visualizes the motion of the musculoskeletal model
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training. Frame skipping repeats a selected action for a 
given number of frames instead of operating the control-
ler every frame [142]. This technique reduces the sam-
pling rate and thus computations while maintaining a 
meaningful representation of observations and control. 
Discretization of the muscle excitations constrains the 
action space and thus the search space, which can lead 
to much faster training. In the extreme case, binary dis-
cretization (i.e., muscles were either off or fully activated) 
was used by some teams in an early stage of training. 
Reward shaping modifies the reward function provided 
by the environment to encourage an agent to explore cer-
tain regions of the solution space. For example, a term 
added to the reward function that penalizes crossover 
steps encouraged controllers to produce more natural 
steps [142, 143]. Once agents found solutions that seem 
to achieve intended behaviors with these techniques, 
they typically were further tuned with the original prob-
lem formulation.

Curriculum learning [144] was also used by the top 
teams. Curriculum learning is a training method where 
a human developer designs a curriculum that consists 
of a series of simpler tasks that eventually lead to the 
original task that is challenging to train from scratch. 
Zhou et al. [141] trained a policy for normal speed walk-
ing by first training it to run at high speed, then to run 
at slower speeds, and eventually to walk at normal speed. 
They found that the policy trained through this process 
resulted in more natural gaits than policies that were 
directly trained to walk at normal speeds. This is proba-
bly because there is a limited set of very high-speed gaits 
that are close to human sprinting, and starting from this 
human-like sprinting gait could have guided the solu-
tion to a more natural walking gait out of a large variety 
of slow gaits, some of which are unnatural and ineffective 
local minima. Then they obtained their final solution pol-
icy by training this basic walking policy to follow target 
velocities and to move with minimum muscle effort.

All of the top teams used off-policy deep RL algo-
rithms. The first place entry by Zhou et  al. [141] used 
DDPG [115], the second place entry by Kolesnikov and 
Hrinchuk [142] used TD3 [116], and the third place entry 
by Akimov [143] used SAC [117]. Since off-policy algo-
rithms allow updating the policy using data collected in 
previous iterations, they can be substantially more sam-
ple efficient than their on-policy counterparts and could 
help to compensate for the computationally expensive 
simulation. Off-policy algorithms are also more ame-
nable to distributed training, since data-collection and 
model updates can be performed asynchronously. Kole-
snikov and Hrinchuk [142] leveraged this property of 
off-policy methods to implement a population-based 
distributed training framework, which used an ensemble 

of agents whose experiences were collected into a shared 
replay buffer that stored previously collected (observa-
tion, action, reward, next observation) pairs. Each agent 
was configured with different hyperparameter settings 
and was trained using the data collected from all agents. 
This, in turn, improved the diversity of the data that was 
used to train each policy and also improved the explora-
tion of different strategies for solving a particular task.

The winning team, Zhou et  al., proposed risk averse 
value expansion (RAVE), a hybrid approach of model-
based and model-free RL [141]. Their method fits an 
ensemble of dynamics models (i.e., models of the envi-
ronment) to data collected from the agent’s interac-
tion with the environment, and then uses the learned 
models to generate imaginary trajectories for training a 
Q-function. This model-based approach can substantially 
improve sample efficiency by synthetically generating a 
large volume of data but can also be susceptible to bias 
from the learned models, which can negatively impact 
performance. To mitigate potential issues due to model 
bias, RAVE uses an ensemble of dynamics models to esti-
mate the confidence bound of the predicted values and 
then trains a policy using DDPG to maximize the confi-
dence lower bound. Their method achieved impressive 
results on the competition tasks and also demonstrated 
competitive performance on standard OpenAI Gym 
benchmarks [131] compared to state-of-the-art algo-
rithms [141].

Implications for human locomotion control
The top solution shows that it is possible to produce 
many locomotion behaviors with the given 3D human 
musculoskeletal model, despite its simplifications. The 
musculoskeletal model simplifies the human body by, for 
example, representing the upper body and the pelvis as a 
single segment. Moreover, the whole body does not have 
any degree of freedom for internal yaw motion (Fig. 8a). 
Such a model was selected for the competition as it can 
produce many locomotion behaviors including walking, 
running, stair and slope climbing, and moderate turning 
as shown in a previous study [6]. On the other hand, the 
missing details of the musculoskeletal model could have 
been crucial for generating other behaviors like sharp 
turning motions and gait initiation. The top solution 
was able to initiate walking from standing, quickly turn 
towards a target (e.g., turn 180◦ in one step; Fig. 9), walk 
to the target at commanded speeds, and stop and stand at 
the target. To our knowledge, it is the first demonstration 
of rapid turning motions with a musculoskeletal model 
with no internal yaw degree of freedom. The solution 
used a strategy that is close to a step-turn rather than a 
spin-turn, and it will be interesting to further investigate 
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how the simulated motion compares with human turning 
[145, 146].

The top solutions had some limitations in produc-
ing human-like motions. In the top solution [141], the 
human model first turned to face the target then walked 
forward towards the target with a relatively natural gait. 
However, the gait was not as close to human walking as 
motions produced by previous neuromechanical mod-
els and trajectory optimization [6, 49]. This is not sur-
prising as the controllers for the competition needed to 
cover a broad range of motions, and thus were more dif-
ficult to fully optimize for specific motions. The second 
and third solutions [142, 143] were further from human 
motions as they gradually moved towards a target often 
using side steps. As policy gradient methods use gradient 
ascent, they often get stuck at local optima resulting in 
suboptimal motions [129] even though natural gaits are 
more efficient and agile. Although the top solution over-
came some of these suboptimal gaits through curriculum 
learning, better controllers could be trained by utilizing 
imitation learning for a set of optimal motions [10–12] or 
by leveraging control models that produce natural gaits 
[6, 20]. Different walking gaits, some of which are pos-
sibly suboptimal, are also observed in toddlers during the 
few months of extensive walking experience [147, 148], 
and interpreting this process with an RL framework will 
be instructive to understanding human motor learning.

Future directions
Deep reinforcement learning could be a powerful tool in 
developing neuromechanical control models. The best 
solutions of the Learn to Move competition, which used 
deep RL without reference motion data, produced rapid 
turning and walk-to-stand motions that had not previ-
ously been demonstrated with physiologically plausible 
models. However, it is difficult to fully optimize a deep 
neural network, suggesting that it is very challenging to 
train a single network that can produce a wide range of 
human-like motions. Moreover, only the top three teams 
in the competition were able to conduct the task of fol-
lowing target velocities [141–143], and such brute force 
deep RL may not easily extend for tasks that require long-
term motion planning, such as navigating in a dynamic 
and complex environment.

Various deep reinforcement learning approaches, such 
as imitation learning and hierarchical learning, could be 
used to produce more optimized and complex motions. 
Humans can perform motions that are much more chal-
lenging than just walking at various speeds and direc-
tions. Parkour athletes, for example, can plan and execute 
jumping, vaulting, climbing, rolling, and many other 
acrobatic motions to move in complex environments, 
which would be very difficult to perform with brute 
force RL methods. Imitation learning [10, 11, 126] could 
be used to train multiple separate networks to master a 
set of acrobatic skills (Fig. 7). These networks of motion 
primitives can then be part of the lower layer of a hierar-
chical controller [149–151], where a higher-layer network 
could be trained to coordinate the motion skills. A physi-
ologically plausible control models that produces human-
like walking, for instance, can also be part of the lower 
layer. More control layers that analyze dynamic scenes 
and plan longer-term motion sequences [152, 153] can 
be added if a complex strategy is required for the task. 
We will design future competitions to promote research 
in these directions of performing motions that would be 
difficult to produce with brute force deep RL. The task 
can be something like the World Chase Tag competition, 
where two athletes take turns to tag the opponent, using 
athletic movements, in an arena filled with obstacles 
[154].

Deep RL could also help to advance our understand-
ing of human motor control. First, RL environments and 
solutions could have implications for human movement. 
While interpreting individual connections and weights 
of general artificial neural networks in terms of biologi-
cal control circuits may not be plausible, rewards and 
policies that generate realistic motions could inform us 
about the objectives and control structures that underlie 
human movement. Also, perturbation responses of the 
trained policies that signify sensory-motor connections 
could be used to further analyze the physiological plausi-
bility of the policies by comparing the responses to those 
observed in human experiments [81, 155–157]. Second, 
we could use deep RL as a means of training a black-box 
controller that complements a physiologically plausible 
model in simulating motions of interest. For instance, 
one could test an ankle control model in the context of 

Fig. 9 Rapid turning motion. The top solution can make the musculoskeletal model with no internal yaw degree of freedom to turn 180◦ in a single 
step. Snapshots were taken every 0.4 s
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walking if there is a black-box controller for the other 
joints that in concert produces walking. Third, we may be 
able to use data-driven deep RL, such as imitation learn-
ing, to train physiologically plausible control models. 
We could establish such a training framework by using 
existing plausible control models as baseline controllers 
to produce (simulated) training data, and then determin-
ing the size and scope of gait data needed to train policies 
that capture the core features of the baseline control-
lers. Once the framework is established and validated 
with these existing control models, we could train new 
policies using human motion data. These control mod-
els could better represent human motor control than the 
ones that have been developed through imitation RL with 
only target motions as reference data. Also, these models 
could produce reliable predictions and could be custom-
ized to individuals.

While this paper focuses on the potential synergy 
of neuromechanical simulations and deep reinforce-
ment learning, combining a broader range of knowl-
edge, models, and methodologies will be vital in further 
understanding and modeling human motor control. For 
instance, regarding motor learning, there are a number of 
hypotheses and models of the signals that drive learning 
[102, 158], the dynamics of the adaptation process [103, 
159], and the mechanisms of constructing and adapting 
movements [160–163]. Most of these learning models 
seek to capture the net behavioral effects, where a body 
motion is often represented by abstract features; imple-
menting these learning models together with motion 
control models (such as those discussed in this paper) 
could provide a holistic evaluation of both motor control 
and learning models [164–166]. There are also different 
types of human locomotion models, including simple 
dynamic models and data-driven mathematical mod-
els. These models have provided great insights into the 
dynamic principles of walking and running [167–170], 
the stability and optimality of steady and non-steady gaits 
[171–177], and the control and adaptation of legged loco-
motion [166, 178–181]. As these models often account 
for representative characteristics, such as the center of 
mass movement and foot placement, they could be used 
in modeling the higher layer of hierarchical controllers.

Conclusion
In this article, we reviewed neuromechanical simula-
tions and deep reinforcement learning with a focus on 
human locomotion. Neuromechanical simulations pro-
vide a means to evaluate control models, and deep RL is 
a promising tool to develop control models for complex 
movements. Despite some success of using controllers 
based on deep RL to produce coordinated body motions 
in physics-based simulations, producing more complex 

motions involving long-term planning and learning phys-
iologically plausible models remain as future research 
challenges. Progress in these directions might be accel-
erated by combining domain expertise in modeling 
human motor control and advanced machine learning 
techniques. We hope to see more interdisciplinary stud-
ies and collaborations that are able to explain and pre-
dict human behaviors. We plan to continue to develop 
and disseminate the Learn to Move competition and its 
accompanying simulation platform to facilitate these 
advancements toward predictive neuromechanical simu-
lations for rehabilitation treatment and assistive devices.

Appendix—Reward function
The reward function, in the NeurIPS 2019: Learn to 
Move competition, was designed based on previous neu-
romechanical simulation studies [6, 28] that produced 
human-like walking. The total reward, J (π) , consisted of 
three reward terms:

where Ralive (with balive = 0.1 ) was for not falling down, 
Rstep was for making footsteps with desired velocities and 
small effort, and Rtarget was for reaching target locations. 
The indexes isim ∈ {1, 2, ..., 2500} , istep ∈ {1, 2, ...} and 
itarget ∈ {1, 2} were for the simulation step, footstep, and 
target location, respectively. The step reward, Rstep con-
sists of one bonus term and two cost terms. The step 
bonus, bs = �tistep =

∑

i in istep
�t , where �t = 0.01 s is 

the simulation time step, is weighted heavily with ws to 
ensure the step reward is positive for every footstep. The 
velocity cost, cv =

∥

∥

∥

∑

i in istep

(

vpel − vtgt0
)

�t
∥

∥

∥

2
 , penal-

izes the deviation of average velocity during the footstep 
from the average of the target velocities given during that 
step. As the velocity cost is calculated with average veloc-
ity, it allows instantaneous velocity to naturally fluctuate 
within a footstep as in human walking [182]. The effort 
cost, ce =

∑

i in istep

∑

m Am
2�t , penalizes the use of 

muscles, where Am is the activation level of muscle 
m ∈ {HABL,HADL, ...,TAR} . The time integration of 
muscle activation square approximates muscle fatigue 
and is often minimized in locomotion simulations [26, 
28]. The step bonus and costs are proportioned by the 
simulation time step so that the total reward does not 
favor many small footsteps over fewer large footsteps or 
vice versa. The weights were ws = 10 , wv = 3 , and we = 1 . 
Lastly, the target reward, Rtarget , with high bonuses of 
btarget = 500 were to reward solutions that successfully 
follow target velocities. At the beginning of a simulation 

(1)

J (π) = Ralive + Rstep + Rtarget

=
∑

isim

balive +
∑

istep

(wsbs − wvcv − wece)+
∑

itarget

btarget
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trial, target velocities pointed toward the first target loca-
tion ( itarget = 1 ), and if the human model reached the tar-
get location and stayed close to it ( ≤ 0.3 m) for a while 
( 2 ∼ 4 s), btarget was awarded. Then the target velocities 
were updated to point toward a new target location 
( itarget = 2 ) with another bonus btarget . The hypothetical 
maximum total reward of a trial, with zero velocity and 
effort costs, is max(Ralive)+max

(

Rstep

)

+max
(

Rtarget

)

= 250+ 250+ 1000 = 1500.
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