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Figure 1: Our framework enables physically simulated characters to perform scene interaction tasks in a natural and life-like
manner. We demonstrate the effectiveness of our approach through three challenging scene interaction tasks: carrying, sitting,
and lying down, which require coordination of a character’s movements in relation to objects in the environment.

ABSTRACT
Movement is how people interact with and affect their environ-
ment. For realistic character animation, it is necessary to synthesize
such interactions between virtual characters and their surround-
ings. Despite recent progress in character animation using machine
learning, most systems focus on controlling an agent’s movements
in fairly simple and homogeneous environments, with limited inter-
actions with other objects. Furthermore, many previous approaches
that synthesize human-scene interactions require significant man-
ual labeling of the training data. In contrast, we present a system
that uses adversarial imitation learning and reinforcement learn-
ing to train physically-simulated characters that perform scene
interaction tasks in a natural and life-like manner. Our method
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learns scene interaction behaviors from large unstructured motion
datasets, without manual annotation of the motion data. These
scene interactions are learned using an adversarial discriminator
that evaluates the realism of a motion within the context of a scene.
The key novelty involves conditioning both the discriminator and
the policy networks on scene context. We demonstrate the effective-
ness of our approach through three challenging scene interaction
tasks: carrying, sitting, and lying down, which require coordination
of a character’s movements in relation to objects in the environment.
Our policies learn to seamlessly transition between different behav-
iors like idling, walking, and sitting. By randomizing the properties
of the objects and their placements during training, our method is
able to generalize beyond the objects and scenarios depicted in the
training dataset, producing natural character-scene interactions for
a wide variety of object shapes and placements. The approach takes
physics-based character motion generation a step closer to broad
applicability. Please see our supplementary video for more results.
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1 INTRODUCTION
Realistically animating virtual characters is a challenging and fun-
damental problem in computer graphics. Most prior work focuses
on generating realistic human motions and often overlooks the fact
that, when humans move, the movements are often driven by the
need to interact with objects in a scene. When interacting with a
scene, characters need to “perceive" the objects in the environment
and adapt their movements by taking into account environmental
constraints and affordances. The objects in the environment can
restrict movement, but also afford opportunities for interaction.
Therefore characters need to adapt their movements according to
object-specific functionality. Lying down on a bunk bed requires
different movements than lying down on a sofa. Similarly, picking
up objects of different sizes may require different strategies.

Existing techniques for synthesizing character-scene interactions
tend to be limited in terms of motion quality, generalization, or
scalability. Traditional motion blending and editing techniques [Gle-
icher 1997; Lee and Shin 1999] require significant manual effort
to adapt existing motion clips to a new scene. Data-driven kine-
matic models [Hassan et al. 2021; Starke et al. 2019] produce high-
quality motion when applied in environments similar to those
seen during training. However, when applied to new scenarios,
such kinematic models struggle to generate realistic behaviors that
respect scene constraints. Physics-based methods are better able
to synthesize plausible motions in new scenarios by leveraging a
physics simulation of a character’s movements and interactions
within a scene. Reinforcement learning (RL) has become one of the
most commonly used paradigms for developing control policies
for physically-simulated characters. However, it can be notoriously
difficult to design RL objectives that lead to high-quality and natu-
ral motions [Heess et al. 2017]. Motion tracking [Peng et al. 2018]
can improve motion quality by training control policies to imi-
tate reference motion data. However, it can be difficult to apply
tracking-based methods to complex scene-interaction tasks, where
a character may need to compose, and transition between, a diverse
set of skills in order to effectively interact with its surroundings.

Recently, Adversarial Motion Priors (AMP) [Peng et al. 2021]
have been proposed as a means of imitating behaviors from large
unstructured motion datasets, without requiring any annotation of
the motion data or an explicit motion planner. This method lever-
ages an adversarial discriminator to differentiate between motions
in the dataset and motions generated by the policy. The policy is
trained to satisfy a task reward while also trying to fool the dis-
criminator by producing motions that resemble those shown in

the dataset. Crucially, the policy need not explicitly track any par-
ticular motion clip, but is instead trained to produce motions that
are within the distribution of the dataset. This allows the policy
to deviate, interpolate, and transition between different behaviors
as needed to adapt to new scenarios. This versatility is crucial for
character-scene interaction, which requires fine-grain adjustments
to a character’s behaviors in order to adapt to different object con-
figurations within a scene.

In this work, we present a framework for training physically sim-
ulated characters to perform scene interaction tasks. Our method
builds on AMP and extends it to character-scene interaction tasks.
Unlike the AMP discriminator, which only considers the character’s
motion, our discriminator jointly examines the character and the
object in the scene. This allows our discriminator to evaluate the
realism of the character’s movements within the context of a scene
(e.g., a sitting motion is realistic only when a chair is present). In
addition, given a small dataset of human-object interactions, our
policy discovers how to adapt these behaviors to new scenes. For
example, from about five minutes of motion capture data of a hu-
man carrying a single box, we are able to train a policy to carry
hundreds of boxes with different sizes and weights. We achieve this
by populating our simulated environments with a wide range of
object instances and randomizing their configuration and physical
properties. By interacting with these rich simulated environments,
our policies learn to interact realistically with a wide range of object
instances and environment configurations. We demonstrate the ef-
fectiveness of our method with three challenging scene-interaction
tasks: sit, lie down, and carry. As we show in our experiments, our
policies are able to effectively perform all of these tasks and achieve
superior performance compared to prior state-of-the-art kinematic
and physics-based methods.

In summary, our main contributions are: (1) A framework for
training physically simulated characters to perform scene inter-
action tasks without manual annotation. (2) We leverage a scene-
conditioned discriminator that takes into account a character’s
movements in the context of objects in the environment. (3) We in-
troduce a randomization approach for physical properties of objects
in the scene that enables generalization beyond the objects shown
in the demonstration. While our framework consists of individual
components that have been introduced in prior work, the partic-
ular choice and combination of these components in the context
of physics-based scene interaction tasks is novel, and we demon-
strate state-of-the-art results for accomplishing these tasks with
physically simulated characters.

2 RELATEDWORK
In the interest of brevity, the following discussion focuses on full
body animation. However, there is a long line of related research
on dexterous manipulation. See Sueda et al. [2008]; Wheatland et al.
[2015]; Ye and Liu [2012]; Zhang et al. [2021] for more details.

2.1 Deep Learning Kinematic Methods
The applicability of deep neural networks (NN) to human motion
synthesis has been studied extensively [Fragkiadaki et al. 2015;
Habibie et al. 2017; Holden et al. 2016; Martinez et al. 2017; Taylor
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and Hinton 2009]. Unlike other regression tasks, classical archi-
tectures like CNNs, LSTMs and feed-forward networks perform
poorly on motion synthesis. They tend to diverge or converge to a
mean pose when generating long sequences. Thus, several novel
architectures have been introduced in the literature to improve
motion quality. For instance, instead of directly training a single
set of NN parameters, Phase-Functioned Neural Networks [Holden
et al. 2017] compute the NN parameters at each frame as a function
of the phase of a motion. This model can generate high-quality
motions but is limited to cyclic behaviors that progress according
to a well-defined phase variable. Starke et al. [2019] use a phase
variable and mixture of experts [Eigen et al. 2014; Jacobs et al. 1991]
to synthesize object interaction behaviors, such as sitting and car-
rying. SAMP [Hassan et al. 2021] avoids the need for phase labels
by training an auto-regressive cVAE [Diederik and Welling 2014;
Sohn et al. 2015] using scheduled sampling [Bengio et al. 2015].
Instead of manually labelling the phase, Local Motion Phase [Starke
et al. 2020] and Deep Phase [Starke et al. 2022] propose methods to
compute the phase automatically. Such data-driven kinematic scene-
interaction methods typically require high-quality 3D human-scene
data, which is scarce and difficult to record. Since these methods
only learn from demonstrations, their performance degrades when
applied to scenarios unlike those in the training dataset [Wang et al.
2022, 2021; Zhang et al. 2022; Zhang and Tang 2022].

2.2 Physics-Based Methods
Physics-based methods generate motions by leveraging the equa-
tions of motion of a system [Raibert and Hodgins 1991]. The phys-
ical plausibility of the generated motion is guaranteed, but the
resulting behaviors may not be particularly life-like, since simu-
lated character models provide only a coarse approximation of the
biomechanical properties of their real-life counterparts. Heuristics,
such as symmetry, stability, and power minimization [Raibert and
Hodgins 1991;Wang et al. 2009] can be incorporated into controllers
to improve the realism of simulated motions. Imitation learning
is another popular approach to improve the realism of physically
simulated characters. In this approach, a character learns to per-
form various behaviors by imitating reference motion data [Peng
et al. 2018]. Motion tracking is one of the most commonly used
techniques for motion imitation and is effective at reproducing
a large array of challenging skills [Bergamin et al. 2019; Chen-
tanez et al. 2018; Liu et al. 2010; Wang et al. 2020; Won et al. 2020].
However, it can be difficult to apply tracking-based methods to
solve tasks that require composition of diverse behaviors, since
the tracking-objective is typically only applied with respect to one
reference motion at a time. Inspired by Generative Adversarial Im-
itation Learning (GAIL) [Ho and Ermon 2016], Peng et al. [2021]
train a motion discriminator on large unstructured datasets and
use it as a general motion prior for training control policies. This
technique allows characters to imitate and compose behaviors from
large datasets, without requiring any annotation of the motion clips,
such as skill or phase labels. A different GAN-like approach was
concurrently introduced by Xu and Karamouzas [2021]. Peng et al.
[2022] use adversarial learning to pre-train a large skilll embedding
and use it for several tasks. In contrast, Won et al. [2022] pretrain
a controller using conditional VAEs and use it to solve variety of

tasks. In this work, we leverage an adversarial imitation learning
approach, but go beyond prior work to develop control policies for
character-scene interaction tasks.

2.3 Character-Scene Interaction
Very little work has tackled the problem of synthesizing physical
character-scene interactions. Early work simplifies the object ma-
nipulation problem by explicitly attaching an object to the hands
of the character [Coros et al. 2010; Mordatch et al. 2012; Peng et al.
2019], thereby removing the need for the character to grasp and
manipulate an object’s movements via contact. Liu and Hodgins
[2018] use a framework based on trajectory optimization to learn
basket-ball dribbling. Chao et al. [2019] propose a hierarchical con-
troller to synthesize sitting motions, by dividing the sitting task
into sub-tasks and training separate controllers to imitate relevant
reference motion clips for each sub-task. A meta controller is then
trained to select which sub-task to execute at each time step. A
similar hierarchical approach is used to train characters to play a
simplified version of football [Huang et al. 2021; Liu et al. 2021].
Merel et al. [2020] train a collection of policies, each of which
imitates a motion clip depicting a box-carrying or ball-catching
task. The different controllers are then distilled into a single latent
variable model that can then be used to construct a hierarchical
controller for performing more general instances of the tasks. In
contrast to the prior work, our approach is not hierarchical, gener-
alizes to more objects and scenes, can be trained on large datasets
without manual labels, and is easily applicable to multiple tasks.

3 METHOD
To train policies that enable simulated characters to interact with
objects in a natural and life-like manner, we build on the Adversarial
Motion Priors (AMP) framework [Peng et al. 2021]. Our approach
consists of two components: a policy and a discriminator as shown
in Fig. 2. The discriminator’s role is to differentiate between the
behaviors produced by the simulated character and the behaviors
depicted in a motion dataset. The role of the policy 𝜋 is to control
the movements of the character in order to maximize the expected
accumulative reward 𝐽 (𝜋). The agent’s reward 𝑟𝑡 at each time step
𝑡 is specified according to:

𝑟𝑡 = 𝑤𝐺𝑟𝐺 (s𝑡 , g𝑡 , s𝑡+1) +𝑤𝑆𝑟𝑆 (s𝑡 , s𝑡+1). (1)

The task reward 𝑟𝐺 encourages the character to satisfy high-level
objectives, such as sitting on a chair or moving an object to the
desired location. The style reward 𝑟𝑆 encourages the character to
imitate behaviors from a motion dataset as it performs the desired
task. s𝑡 ∈ S is the state at time 𝑡 . a𝑡 ∈ A are the actions sampled
from the policy 𝜋 at time step 𝑡 . g𝑡 ∈ G denotes the task-specific
goal features at time 𝑡 .𝑤𝐺 and𝑤𝑆 are weights. The policy is trained
to maximize the expected discount return 𝐽 (𝜋),

𝐽 (𝜋) = E𝑝 (𝜏 |𝜋 )

[
𝑇−1∑︁
𝑡=0

𝛾𝑡𝑟𝑡

]
, (2)

where 𝑝 (𝜏 |𝜋) denotes the likelihood of a trajectory 𝜏 under the
policy 𝜋 . 𝑇 is the time horizon, and 𝛾 ∈ [0, 1] is a discount factor.

The style reward 𝑟𝑆 is modeled using an adversarial discriminator
that evaluates the similarity between the motions produced by
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Figure 2: Our framework has two main components: a pol-
icy and a discriminator. The discriminator differentiates be-
tween the behaviors generated by the policy and the behav-
iors depicted in a motion dataset. In contrast to prior work,
our discriminator receives information pertaining to both
the character and the environment. Specifically, the policy is
trained to control the character movements to achieve a task
reward 𝑟𝐺 while producing a motion that looks like realistic
human behavior within the context of a given scene.

the physically simulated character and the motions depicted in a
dataset of motion clips. The discriminator is trained according to
the objective proposed by Peng et al. [2021]:

arg min
𝐷

− E𝑑M (s𝑡 ,s𝑡+1) [log (𝐷 (s𝑡 , s𝑡+1))] (3)

− E𝑑𝜋 (s𝑡 ,s𝑡+1) [log (1 − 𝐷 (s𝑡 , s𝑡+1))] (4)

+𝑤gp E𝑑M (s𝑡 ,s𝑡+1)

[������∇𝜙𝐷 (𝜙)
���𝜙=(s𝑡 ,s𝑡+1) ������2] , (5)

where 𝑑M (s𝑡 , s𝑡+1) and 𝑑𝜋 (s𝑡 , s𝑡+1) represent the likelihoods of
the state transition from s𝑡 to s𝑡+1 under the dataset distributionM
and the policy 𝜋 respectively.𝑤gp is a manually specified coefficient
for a gradient penalty regularizer [Mescheder et al. 2018]. The style
reward 𝑟𝑆 for the policy is then specified according to:

𝑟𝑆 (s𝑡 , s𝑡+1) = −log(1 − 𝐷 (s𝑡 , s𝑡+1)) . (6)

4 STATE AND ACTION REPRESENTATION
The state s is represented by a set of features that describes the
configuration of the character’s body, as well as the configuration
of the objects in the scene relative to the character. These features
include:

• Root height
• Root rotation
• Root linear and angular velocity
• Local joints rotations

• Local joints velocities
• Positions of four key joints: right hand, left hand, right foot,
and left foot

• Object position
• Object orientation

The height and rotation of the root are recorded in the world co-
ordinate frame while velocities of the root are recorded in the
character’s local coordinate frame. Rotations are presented using a
6D normal-tangent encoding [Peng et al. 2021]. The positions of
four key joints, object position, and object orientation are recorded
in the character’s local coordinate frame. A key difference from
prior work is the inclusion of object features in the state. These
object features enable the discriminator to not only judge the re-
alism of the motion but also how realistic the motion is w.r.t. to
the object. Note that the object can move during the action and the
agent must react appropriately. Combined, these features result in
a 114D state space. The actions a generated by the policy specify
joint target rotations for PD controllers. Each target is represented
as an exponential map a ∈ R3 [Grassia 1998], resulting in a 28D
action space.

We demonstrate the effectiveness of our framework on three
challenging interactive tasks: sit, lie down, and carry. Separate
policies are trained for each task. The style reward 𝑟𝑆 is the same
for all tasks. Please refer to the supplementarymaterial for a detailed
definition of the task-specific reward 𝑟𝐺 .

5 MOTION DATASET
In order to train the character to interact with objects in a life-like
manner, we train our method using a motion dataset of human-
scene interactions. For the sit and lie down tasks; we use the SAMP
dataset [Hassan et al. 2021], which contains 100 minutes of MoCap
clips of sitting and lying down behaviors. Furthermore, the dataset
also records the positions and orientations of objects in the scene,
along with CAD models for seven different objects. For the carry
task; we captured 15MoCap clips of a subject carrying a single box.
In each clip, the subject walks towards the box, picks it up, and
carries it to a target location. The initial and target box locations
are varied in each clip. In addition to full-body MoCap, the motion
of the box is also tracked using optical markers.

The SAMP dataset provides examples of interactions with only
seven objects, similarly our object-carry dataset only contains
demonstration of carrying a single box. Nonetheless we show that
our framework allows the agent to generalize from these limited
demonstrations to interact with a much wider array of objects in
a natural manner. This is achieved by exposing the policy to new
objects in the training phase. Our policy is trained using multiple
environments simulated in parallel in IsaacGym [Makoviychuk
et al. 2021]. We populate each environment with different object
instances to encourage our policy to learn how to interact with
objects exhibiting natural class variation. For the sit and lie down
tasks we replace the original objects with different objects of the
same class from ShapeNet [Chang et al. 2015]. The categories are:
regular chairs, armchairs, tables, low stools, high stools, sofas, and
beds. In total, we used ∼ 350 unique objects from ShapeNet [Chang
et al. 2015]. To further increase the diversity of the objects, we
randomly scale the objects in each training episode by a scale factor
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between 0.8 and 1.2. For the carry task; the size of the object is
randomly scaled by a factor between 0.5 and 1.5.

6 TRAINING
At the start of each episode, the character and objects are initialized
to states sampled randomly from the dataset. This leads to the
character sometimes being initialized far from the target, requiring
it to learn to walk towards the target and execute the desired action.
At other times, it is initialized close to the completion state of
the task, i.e. sitting on the object or holding a box. In contrast to
always initializing the policy to a fixed starting state, this Reference
State Initialization approach [Peng et al. 2018] has been shown to
significantly speed up training progress and produce more realistic
motions.

Since the reference motions depict only a limited set of scenarios,
initialization from this alone is not sufficient to cover all possible
configurations of the scene. In order to train general policies that are
able to execute the desired task from a wide range of initial configu-
rations, we randomize the object position w.r.t. the character at the
beginning of each episode. The object is placed anywhere between
one and ten meters away from the character on the horizontal plane.
The object orientation is sampled uniformly between [0, 2𝜋]. The
episode length is set to 10 seconds for the sit and lie down tasks,
and 15 seconds for the carry task. In addition, we terminate the
policy early if any joint, except the feet and hands, is within 20cm
of the ground, or if the box is within 30cm of the ground.

The policy 𝜋 is modeled using a neural network that takes as in-
put the current state s𝑡 and goal g𝑡 , then predicts the mean 𝜇 (s𝑡 , g𝑡 )
of a Gaussian action distribution 𝜋 (a𝑡 |s𝑡 , g𝑡 ) = N (𝜇 (s𝑡 , g𝑡 ), Σ).
The covariance matrix Σ is manually specified and kept fixed dur-
ing training. The policy, value function and the discriminator are
modeled by separate fully-connected networks with the follow-
ing dimensions {1024, 512, 28}, {1024, 512, 1}, {1024, 512, 1} respec-
tively. ReLU activations are used for all hidden units. We follow the
training strategy of Peng et al. [2021] to jointly train the policy and
the discriminator.

7 RESULTS
In this section, we show results of our method on different scene-
interaction tasks. In Fig. 3 we show examples of our character
executing sit, lie down, and carry tasks. In each task the charac-
ter is initialized far from the object with a random orientation.
The character first approaches the object, using locomotion skills
like walking and running, and then seamlessly transitions to task-
specific behavior, such as sitting, lying down, or picking up the
object. The character is able to smoothly transition from idling to
walking, and from walking to the various task-specific behaviors.
For the carry task, note that the object is not attached to the char-
acter’s hand, and is instead simulated as a rigid body and moved
by forces applied by the character.

From human demonstrations of interacting with seven objects
only, we teach our policy to sit and lie down on ∼ 350 training
objects.We demonstrate the generalization capabilities of ourmodel
by testing on objects that were not seen during training as shown
in Fig. 4. Our method successfully sits and lies down on a wide
range of objects and is able to adapt the character’s behaviors

accordingly to a given object. The character jumps to sit on a high
chair, leans back on a sofa, and puts its arms on the armrests of a
chair when present. We used ∼ 350 training objects and tested on 21
new objects. Similarly, our policy learns to carry boxes of different
sizes as shown in Fig. 5. We tested our policy on box sizes sampled
uniformly between 25 × 17.5 × 15cm and 75 × 52.5 × 45cm. Our
method generalizes beyond what is shown in the original human
demonstrations. For example, the character can carry very small
boxes as shown in Fig. 5, although no such objects were depicted
in the human demonstration dataset. We further test our policy on
different scales of the same object as shown in Fig. 6. We observe
that the policy learns to adapt to the different sized objects in
order to successfully sit or lie down on the support surface. More
examples are available in the supplementary video.

7.1 Evaluation
We quantitatively evaluate our method by measuring the success
rate for each task. Table 1 summarizes the performance statistics
on the various tasks. Success rate records the percentage of trials
where the character successfully completes the task objectives. We
consider sitting to be successful if the character’s hip is within 20
cm of the target location. Similarly, we declare lying down to be
successful if the hip and the head of the character are both within
30 cm from a target location. The carry task is successful if the
box is within 20 cm of the target location. All tasks are considered
unsuccessful if their success criterion is not met within 20 seconds.
We evaluate the sit and lie down tasks on 16 and 5 unseen objects
respectively. To increase the variability between the objects, we
randomly scale the objects at each trial with a scale factor between
0.8 and 1.2. For the carry task, we randomly scale the original box
shown in the human demonstration by a scale factor between 0.5
and 1.5 in each trial. The default box has a size of 50 × 35 × 30
cm. The character is randomly initialized anywhere between 1 m
and 10 m away from the object and with a random orientation. In
addition to the success rate, we also measure the average execution
time and precision for all successful trials. Execution time is the
average time until the character succeeds in executing the task,
according to the success definitions above. Precision is the average
distance between the hip, head, box and their target locations for
sit, lie down, and carry respectively. All metrics are evaluated over
4096 trials per task. Similarly, we evaluate our carry policy, which
is trained to carry boxes of the same size but different weights, in
Table 1 using the same metrics. Please refer to the supplementary
material for more details. Despite the diversity of test objects and
configurations, our policies succeed in executing all task with a
higher than 90% success rate.

Moreover, the character is able to generalize beyond the limited
reference clips and succeeds in executing the tasks from initial
configurations not shown in the reference motion as shown in
Fig. 7. In the reference clips, the character starts up to three meters
away from the object, nonetheless the character learns to execute
the tasks even when initialized up to ten meters away from the
object. This is partly due our randomization approach as described
in Sec. 6.

Next we study the robustness of our policy to external pertur-
bations. We pelt the character with 20 projectiles of weight 1.2 kg
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(a) Sit (b) Lie down (c) Carry

Figure 3: Our method successfully executes three challenging scene-interaction tasks in a life-like manner.

Figure 4: Our method successfully sits and lies down on a wide range of objects and is able to adapt the character’s behaviors to
new objects.

Figure 5: From a human demonstration of carrying a single
box, our method generalizes to carrying boxes of different
sizes.

Figure 6: Our policy is able to adapt to different sized objects.

at random time steps of the trial. We found that our policy is very
robust to these perturbations, and is able to recover and resume
the task upon being hit by a projectile. Examples of these recovery
behaviors are shown in the supplementary video. We also randomly
move the object during the execution of a task (e.g. move the chair
away as the character is about to sit). The supplementary video
shows the robustness of the policy to such sudden changes to the

Table 1: Success rate, average execution time, and average
precision for all tasks. All metrics are averaged over 4096
trails per task.

Task Success Rate
(%)

Execution Time
(Seconds)

Precision
(cm)

Sit 90.4 5.0 6.7
Lie down 90.2 6.3 13.4
Carry 94.3 9.1 8.3

Carry (weights) 97.2 8.7 10.3

Table 2: Success rate under physical perturbations.

Task Success Rate (%)
Sit 87.5

Lie down 82.0
Carry 89.4

environment. Our policies maintain a high success rate under these
physical perturbations for all three tasks, as reported in Table 2.

7.2 Comparisons
There have only been a few previous attempts in the area of synthe-
sizing character-scene interactions. We compare our physics-based
model to NSM [Starke et al. 2019] and SAMP [Hassan et al. 2021],
which are both kinematic models. We also compare to Chao et al.



Synthesizing Physical Character-Scene Interactions SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA

(a) Sit

(b) Lie down

(c) Carry

Figure 7: Reference motion trajectories and the trajectories
generated by our policies when initialized randomly. Tri-
angles indicate starting positions and the target position is
indicated with a circle. From limited reference clips cover-
ing limited configurations, our policy learns to successfully
execute the actions in a wide range of configurations.

[2019], which is a hierarchical-based physical approach. All three
methods are trained on the sitting task. Kinematic models (NSM
and SAMP) tend to produce non-physical behaviors, such as foot-
skating/floating and object penetrations. Some examples are shown
in the supplementary video. Since, kinematic models learn from
human demonstration only, without interaction with the environ-
ment, these models can struggle to generalize to new scenarios.
The work of Chao et al. [2019] synthesizes motions using a physics
simulation, however it often fails to sit on the target object. Most
of time the character falls when approaching the object.

A quantitative comparison to previous methods is available in
Table 3. A trial is considered successful, only if character does not
penetrate the object while approaching it. None of the baselines are
capable of consistently completing the full carry task. NSM [Starke
et al. 2019] trains a character to walk towards a box and lift it up.
However, the character needs to be manually controlled to carry

Table 3: Performance comparision to NSM [Starke et al. 2019],
SAMP [Hassan et al. 2021], Chao et al. [2019]

Metric Sit Lie down
NSM SAMP Chao et al. Ours SAMP Ours

Success Rate(%) 75.0 75.0 17 93.7 50 80
Execution Time(seconds) 7.5 7.2 - 3.7 9.5 6.9

Precision (meters) 0.19 0.06 - 0.09 0.05 0.3

the box to a destination. Our policy, on the other hand, enables
the character to autonomously walk towards a box, lift the box,
and carry it to the destination. We use the pre-trained open-source
models of NSM [Starke et al. 2019], and SAMP [Hassan et al. 2021],
and evaluate them on the same test objects as our method. Note that
our method and SAMP are trained on the same dataset. Retraining
NSM is infeasible due to the missing phase labels. For Chao et al.
[2019], we report the numbers provided in the paper. Table 3 shows
that our method significantly outperforms these prior systems on
the sit and lie down tasks.

8 DISCUSSION
Throughout our experiments, we train a separate policy for each
task. Multi-task RL remains a difficult and open problem [Ruder
2017] and should be investigated in future work. Unlike previous
attempts to synthesize carry motions [Coros et al. 2010; Mordatch
et al. 2012; Peng et al. 2019], our box is not welded to the char-
acter’s hand. The box is simulated as a rigid object and is moved
by forces applied by the character. In a few cases, the character
approaches the object but fails to complete the task successfully
within the duration of an episode. For example, the character might
stand next to the object until the end of the episode. In other cases,
the character might not reach the target object in time because
it follows a suboptimal path; some examples are shown in Fig. 7.
We focus on environments of one objects only. Nonetheless, our
state representation could be augmented to contain other objects.
In addition, it would be exciting to explore adding virtual eyes to
our character. This would allow for interaction with more complex
scenes. We show quantitatively and qualitatively that our random-
ization approach enables the character to interact with a wide range
of test objects. These objects are not used during training and are
randomly selected from ShapeNet. We also show that our method
can adapt to different object sizes (Fig. 5 and Fig. 6) and weights
(Table. 1). Nonetheless, if the test size or weight is far from the
training distribution, we expect the success rate to drop.

9 CONCLUSION
We presented amethod that realistically synthesizes physical and re-
alistic character-scene interaction.We introduced a scene-conditioned
policy and discriminator that take into account a character’s move-
ments in the context of objects in the environment. Our method
learns when and where to transition from one behavior to another
to execute the desired task. We introduced an efficient random-
ization approach for the training objects, their placements, sizes,
and physical properties. This randomization approach allows our
policies to generalize to a wide range of objects and scenarios not
shown in the human demonstration. We showed that our policies
are robust to different physical perturbations and sudden changes
in the environment.
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