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Abstract— This work presents HilLMa-Res, a hierarchical
framework leveraging reinforcement learning to tackle manip-
ulation tasks while performing continuous locomotion using
quadrupedal robots. Unlike most previous efforts that focus
on solving a specific task, HiLMa-Res is designed to be general
for various loco-manipulation tasks that require quadrupedal
robots to maintain sustained mobility. The novel design of
this framework tackles the challenges of integrating continuous
locomotion control and manipulation using legs. It develops an
operational space locomotion controller that can track arbitrary
robot end-effector (toe) trajectories while walking at different
velocities. This controller is designed to be generic to different
downstream tasks, and therefore, can be utilized in high-
level manipulation planning policy to address specific tasks.
To demonstrate the versatility of this framework, we utilize
HiLMa-Res to tackle several challenging loco-manipulation
tasks using a quadrupedal robot in the real world. These tasks
span from leveraging state-based policy to vision-based policy,
from training purely from the simulation data to learning
from real-world data. In these tasks, HiLMa-Res shows better
performance than other methods.

I. INTRODUCTION

Using legs as manipulators to perform non-prehensile
manipulation tasks is a natural behavior commonly observed
among humans. Beyond just locomotion, people are capable
of using their legs for a variety of actions, such as dribbling
a soccer ball while walking or running, or moving an object
by kicking it rather than lifting. Enabling legged robots, like
quadrupeds, to perform such loco-manipulation tasks with
their legs while moving could significantly enhance their
versatility and applicability. However, this is a hard problem.
Using the quadrupedal robot as an example, the robot needs
to consider its stability while walking and also has to
adjust its legs and use whole-body maneuvers to accomplish
fine-grained manipulation tasks. The robot has to update
its leg movement strategy not only for locomotion control
but also for manipulation planning in real-time. Develop-
ing a general solution for different loco-manipulation tasks
further complicates this due to the distinct objectives and
environments associated with different manipulation tasks.
Many attempts have been made to address the challenge of
loco-manipulation, which involves the coupled problem of
locomotion control and manipulation planning. Due to its
difficulty, researchers have opted to simplify the scenario.
This simplification includes focusing on a single task, such as
just ball dribbling [1], [2], or developing separate controllers
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Fig. 1: The proposed HILMA-Res framework enables a quadrupedal
robot to perform different loco-manipulation tasks in the real world.
These include dribbling a ball in a desired direction, stepping
over small blocks scattered on the ground, and navigating a load
to the desired goal through real-world learning. We highlight
the versatility of the HILMA-Res framework in various loco-
manipulation tasks with different observation spaces and learning
algorithms. We encourage readers to view the supplementary video
at https://youtu.be/8d0s9_RDn4E for more results.

like [3]-[5]: one for manipulation using the robot’s legs
and another for continuous locomotion skills. It is still an
open question to develop a general framework that can solve
different manipulation tasks using the robot’s legs while
performing continuous locomotion. In this work, we propose
a hierarchical framework, named HiLLMa-Res, to divide the
complex loco-manipulation task and conquer the control and
planning sub-problems individually by reinforcement learn-
ing (RL). It can be applied to different loco-manipulation
tasks in the real world, as shown in Fig. m

A. Contributions

The main contribution of this work is the introduction
of HiLMa-Res. (1) It is a general framework enabling
quadrupedal robots to perform various manipulation tasks
while maintaining sustained mobility through hierarchical
reinforcement learning (RL). (2) The novel design of HiLMa-
Res addresses the challenges of integrating manipulation
skills with continuous locomotion. This includes implement-
ing a single task-independent operational space locomotion
controller, such as a walking controller, to track arbitrary
end-effector (toe) trajectories, and a high-level task-specific
manipulator planner for determining a residual trajectory for
the end-effector. (3) We demonstrate that this design offers
a versatile solution for different loco-manipulation tasks,
requiring minimal effort for retraining on individual tasks.
This framework supports different observation spaces and
RL algorithms. (4) Our experiments showcase the ability of
HilLMa-Res by realizing various loco-manipulation tasks in
the real world, including ball dribbling (training from simula-
tion data), stepping over stones (using visuomotor skills), and
load navigation (training from real-world data). Additionally,
we show that HiLMa-Res outperforms other state-of-the-art


https://youtu.be/8dOs9_RDn4E

RL methods in the challenging loco-manipulation task.

II. RELATED WORK

Different from the efforts on mobile manipulation with
wheeled bases which does not need to consider the robot’s
stability [6], [7], loco-manipulation using legged robots re-
quires different solutions. Previous work mainly focuses on
two approaches: arm-equipped legged robots, and using the
robot’s legs as manipulators.

Mobile Manipulation with Legged Robots: Equipping a
legged robot, like a quadruped, with an additional arm can
expand its manipulation capabilities by utilizing its mobility
and whole-body maneuvers. Previous research has explored
various methods to improve the coordination between lo-
comotion and manipulation. Some have proposed a resid-
val learning framework to enhance skill coordination [8],
requiring a pre-existing locomotion controller. Others have
focused on developing a unified whole-body policy for both
manipulation and locomotion [9]-[11], though without in-
corporating high-level planning for task space, and focusing
solely on joint-level control. Model-based approaches, using
predictive and whole-body control, facilitate coordinated
movements by accounting for multi-rigid body dynamics but
depend on predefined contact sequences and task-specific
constraints [12], [13]. Techniques combining trajectory opti-
mization and contact planning have achieved versatile multi-
contact loco-manipulation, albeit with the necessity for of-
fline planning [14]. However, integrating an arm increases the
system’s complexity and necessitates additional hardware,
more degrees of freedom, and the added load.

Using Legs for Both Locomotion and Manipulation: Using
legs as end effectors for manipulation in legged robots might
simplify the hardware, but it restricts the robot to non-
prehensile tasks [15]. Legs are critical for stabilizing the
robot, and using them for extra manipulation tasks poses
challenges in maintaining stable gaits. Some work avoids the
need for precise manipulation by only focusing on manipu-
lating large objects [16]. To directly use legs for manipulation
tasks, some prior work used two cascaded RL-based policies
for control and planning in the robot’s operational space,
respectively. This method enables a quadrupedal robot to
shoot [4] or intercept [5]. Others opt to develop a unified
policy. However, these simplify the loco-manipulation prob-
lem by the constrained mobility, such as just standing [4] or
only jumping once [5]. In other work like [3], a single policy
is developed for individual loco-manipulation tasks that are
still limited to constrained mobility, such as standing against
a wall to push a button. If there is a need for continuous
locomotion, such as walking, to enlarge the robot’s working
space, a separate locomotion controller and rule-based policy
selector are necessary in this work [3]-[5]. Specialized
tasks, like dribbling soccer balls while walking, have seen
some development but lack scalability [2]. In the humanoid
robotics field, besides heuristic-based approaches like [17],
hierarchical learning [1] framework has been explored for
using legs in manipulation tasks, yet this work focuses
on task-specific training without a generalizable low-level
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Fig. 2: The HiLMa-Res framework. This hierarchical framework
consists of a controller training stage where we train a task-
independent locomotion controller that tracks desired end-effector
trajectories. This is an addition from sampled CPG trajectories and
sampled Bézier residual trajectories. A planner training stage is
designed to reuse the locomotion controller to train a task-specific
manipulation planner for downstream loco-manipulation tasks. We
highlight the importance of reusing a pre-trained locomotion con-
troller that has been evaluated in the real-world environment, which
enables fast and efficient learning of the planner and prevents
learning dynamically infeasible actions.

controller for downstream manipulation tasks. This work
introduces HiLMa-Res, a hierarchical framework aiming for
generality across loco-manipulation tasks, addressing these
limitations.

III. THE HILMA-RES FRAMEWORK AND
LOCO-MANIPULATION TASKS

In this section, we provide an overview of the HiLMa-
Res framework, as visualized in Fig. @ We frame the loco-
manipulation tasks with continuous locomotion as a com-
bination of two problems with different levels of difficulty
of generalization using RL: versatile locomotion control that
can be realized by a single policy and object manipulation
that can be hard to generalize to different tasks.

The HiLMa-Res contains two parts: a task-independent
operational space locomotion controller and a task-specific
manipulation planner, as shown in Fig. 2| The locomotion
controller is responsible for joint-level control of the whole
body of the quadrupedal robot, leveraging the robot’s pro-
prioceptive feedback as input. We adopt a motion tracking
method where a parameterized reference motion provided by
a Central Pattern Generator (CPG) [18] is utilized to provide
gait priors for tracking various commanded velocities. Note
that the CPG is designed to generate end-effector (toe)
trajectories for the quadrupedal robot with different contact
sequences, different walking velocities, and turning rates.
This facilitates planning and control in the operational space.
Residual trajectories, represented by Bézier curves, are added
to the nominal end-effector trajectories of the swing legs from
CPG, while leaving the stance leg unchanged. The details
for training this operational space locomotion controller are
described in Sec. [Vl After the locomotion controller is
available and evaluated in the real world, it can be kept and
re-used by different task-specific planners. The planner is
designed to accomplish specified loco-manipulation tasks by
specifying the residual trajectories of the end-effector and
the commands for the robot moving base for the locomotion



controller. The input of the planner includes not only the
robot’s proprioceptive feedback but also task-specific infor-
mation, such as the object’s location, or directly using depth
vision as input. Moreover, the planner can be constructed
through different methods, as described in Sec.

To demonstrate the versatility of the HiLMa-Res frame-
work, we evaluate our method on three distinct loco-
manipulation tasks, with increase in difficulty:

Ball Dribbling (Dribble): In this task, a quadrupedal robot
dribbles a soccer ball and controls the ball’s velocity and
direction while dribbling, using a vision-based ball detection
with onboard cameras.

Stepping over Stones (StepOStone): This task requires a
quadrupedal robot to walk through a path littered with small
stones or ground obstacles without collisions, inspired by
the agile movements of a cat (as seen in [19], and as tackled
by a quadrupedal robot in simulation only in [20]). Since
measuring the positions of the small stone could introduce
significant errors, we directly leverage the robot’s onboard
vision in the manipulation planner to prevent the robot’s end-
effectors from hitting the stones. This could allow the policy
developed in simulations to be applied in the real world.

Navigating Load (NavLoad): the robot uses its front legs
to push a small yet relatively heavy box towards a specified
target location, requiring strategic long-term planning. The
difference between simulated environments and the real
world (like ground friction, size and stiffness of the load) can
lead to accumulated errors over the long horizon. Therefore,
this task necessitates real-world training to successfully and
efficiently push the load to the target.

These tasks showcase a wide range of loco-manipulation
capabilities: (1) the use of visual observation (StepOStone)
versus state observation (Dribble, NavLoad), (2) the neces-
sity for short-term planning (StepOStone, Dribble) versus
long-term planning (NavLoad), and (3) tasks that demand
training with real-world data (NavLoad) as opposed to those
that can be transferred directly from simulation to the real
world (StepOStone, Dribble).

IV. TASK-INDEPENDENT QUADRUPEDAL LOCOMOTION
CONTROL IN OPERATIONAL SPACE

The first component of HiLMa-Res is an RL-trained
quadrupedal locomotion controller designed to be broadly
applicable to a wide range of downstream loco-manipulation
tasks. The locomotion controller is trained to enable the robot
to follow a diverse set of end-effector trajectories for the
swing legs while walking, i.e., operating in the operational
space. For brevity, we use “trajectories” to refer to “end-
effector trajectories of the robot’s swing legs".

A. Parameterized Reference Trajectory in Operational Space

We first provide a parameterized reference trajectory. Such
a parameterized reference trajectory is the addition of two
parts: (1) nominal trajectories for a trotting gait from a
Central Pattern Generator (CPG), and (2) residual trajectories
represented by Bézier trajectories that are added to the
nominal trajectories, as illustrated in Fig. [3] Given a trotting
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Fig. 3: In this work, the quadrupedal robot employs a trotting gait,
characterized by two diagonal legs swinging simultaneously. For
each swing leg, there is a desired end-effector trajectory, which is
a summation of a nominal CPG trajectory &, and a residual Bézier
trajectory &,. By learning to change the control points of Bézier
trajectories and the base movement, the policy could adjust the
swing trajectories to perform various loco-manipulation tasks.

gait, there are two nominal and residual trajectories for
the two swing legs, respectively. All the trajectories are
defined in the base footprint frame of the robot. Having
this design for the trajectories is the key to developing a
versatile framework to enable the robot to learn to walk while
adjusting the swing leg trajectories for manipulation tasks.

1) Nominal Trajectories from CPG: The Central Pattern
Generator (CPG) is a bio-inspired way to obtain swing
foot trajectories, which is commonly used in quadrupedal
locomotion control. CPG represents the trajectories of all
four feet in 3D Cartesian space by high-order polynomials
that are parameterized by desired base velocity (jiy and
turning yaw rate qg, with a given step height at the apex
for swing legs. By using a periodic oscillator, the contact
sequence of each leg can be obtained by choosing different
oscillator parameters, which results in different rhythmic
gaits, such as trotting, pacing, etc. For more details on CPG,
we refer readers to [18, Sec. III]. For simplicity, we only
use CPG to develop a trotting gait by fixing the parameters
of the oscillator in this work. In this way, with a fixed
gait period T}, by varying the given command, the periodic
trajectories &,,(t) can be well defined with respect to the time
t. These serve as nominal trajectories for the operational
space locomotion controller. We further denote qg,y’w as
CPG parameters which could be varied in this work.

2) Residual Trajectories Represented by Bézier Curves:
Bézier curves are utilized to specify the change of the
nominal trajectories from CPG, representing the residual
trajectories &, (¢). In this work, the Bézier curves are pa-
rameterized by three control points P; (¢ = 0,1,2) in 3D
Cartesian space. To ensure the swing legs’ trajectories start
and end on the ground (with vertical displacement z = 0), we
set the vertical placement of the first and last control points to
zero, leveraging the characteristic of Bézier curves to always
pass through these points. In this way, the Bézier parameters
that can be chosen are Poo € R? and P; € R®. Then the
change of position in the trajectory at time ¢ can be well
defined by the Bézier function &,.(¢). The time ¢ needs to be
first normalized to be within [0, 1] w.r.t. the timespan of the
Bézier trajectory (i.e., the robot swing period T, = T/2).
We note that more control points can be added as needed,
but an overly complex trajectory may not be dynamically



feasible for the robot during locomotion.

3) Control Objective: The objective of this locomotion
controller at each time ¢ is to track the desired end-effector
trajectories of the swinging legs, &, (t)+&,(t), while tracking
the commands for robot base, such as walking velocity and
turning yaw rate (the CPG parameters qg,yyw).

B. Control Environment

The control policy is trained via RL in a simulated
environment to track target end-effector trajectories and robot
base commands while trotting.

1) Action: The control policy’s output actions specify
desired motor positions aj at each timestep k. The policy
is queried at 50 Hz, and the target motor positions are then
utilized in a joint-level PD controller running at 1 kHz to
calculate motor torques.

2) Observation: At each timestep k, the control policy
receives an observation from the environment and determines
an appropriate action for that scenario. The observation
of is the robot’s proprioceptive feedback, which includes
the robot’s current angular position g4 ¢, angular velocity
d¢.0,» Motor position q,,, and motor velocity q,,. Alongside
the current observation, we also keep track of a short 4-
timestep history of the robot’s past input (action) and output
(observation), i.e., (0. _4,a5_1.;_4), Which are provided
as input to the control policy. This short I/O history helps to
facilitate state estimation and system identification. Addition-
ally, we include a phase variable ¢ = 27¢/T, for the control
policy to indicate the time ¢ of one period of a trotting gait
T,. The phase variable is encoded using a smooth sinusoidal
representation (sin ¢, cos ).

3) Goal: In addition to the observations, the policy is also
conditioned on a goal, which consists of two components.
The first component is the desired end-effector trajectories
to track, which are altered by Bézier parameters Pq ;o for
each swing leg. The second part includes the command for
the robot’s moving base, including desired sagittal velocity
q'g, lateral velocity qg, and turning yaw rate (jffj, which are
also parameters for the CPG.

4) Reward: At each timestep k, the robot executes an
action aj from the control policy. The environment then
transitions to a new state and produces a reward rj. The
reward is a weighted composition of different terms. The
most dominating term (with the largest weight) is the end-
effector tracking reward, which encourages the robot to track
the desired trajectories of the four feet. For swing legs,
the reference trajectories are obtained in Sec. For
stance legs, the reference trajectories become a single point
to keep the foot unmoved. This reward is formulated as
Thacking = €XP(—0cl[Xe,e — (§n(t) + &-(1))l]2) where xc
is the robot end-effector position x. at time ¢ and o, > 0 is
a hyperparameter. Furthermore, penalties are also introduced
for roll, pitch angular velocities and vertical linear velocity
to stabilize the robot base and yaw position tracking.

5) Task Randomization: To diversify training, we ran-
domize the controller policy’s tasks by varying the goal, by
sampling Bézier parameters and CPG parameters uniformly

Bézier Parameters Randomization Range

Control points = Range [m] y Range [m] 2z Range [m]
Po [-0.07, 0.03] [-0.1, 0.1] -

P, [-0.035, 0.035] [-0.1, 0.1] [-0.05, 0.05]
P [-0.03, 0.07] [-0.1, 0.1] -

CPG Parameters Randomization Range

Command Range Unit -
q¢ [-1., 1.] m/s -
q [-0.3, 0.3] m/s -
qu) [-1., 1] rad/s -

TABLE I: Range of Bézier parameters (control points) and CPG
parameters used during training.

from ranges in Table [} Diverse trajectories are generated by
altering these parameters every 10 seconds. Training policies
to perform a diverse range of tasks can also improve the
robustness of the learned models [21].

6) Dynamics Randomization: Since the training envi-
ronment is built in simulation, we also include dynamics
randomization [22] to facilitate transfer from simulation to
the real world. The randomized dynamics parameters include
joint PD gains, ground friction, base mass, and random
perturbations, whose ranges are detailed in [23, Table 3].

C. Training and Deployment Details

The episode is designed to last 4000 timesteps or 80
seconds, trained with GPU-accelerated Isaac Gym physics
simulator. The policy uses a three-layer MLP with hid-
den sizes of [128,64,32] and ELU activation, optimized
by PPO [24]. After convergence, the obtained locomotion
controller can be zero-shot transferred to the robot hardware.

V. TASK-SPECIFIC QUADRUPEDAL MANIPULATION
PLANNING FOR RESIDUAL TRAJECTORIES

After obtaining the operational space locomotion con-
troller that tracks arbitrary end-effector trajectories on the
quadruped hardware, we can reuse this controller for differ-
ent downsteam manipulation tasks. Given the diverse nature
of the manipulation tasks, as described in Sec. we
choose to develop task-specific high-level planning policies
to specify the goal for the task-independent control policy.

A. Planning Environment

In this work, we use RL to develop the planning policy.
As a note, HiLMa-Res allows us to leverage alternative
approaches, like learning from demonstrations, for solving
manipulation planning.

1) Task-independent Action: The manipulation planner
determines the end-effector trajectories and robot base move-
ment for the controller based on the given task. Specifically,
the planner action aj at each timestep includes Bézier
parameters for swing legs’ trajectories (control points P 1 2)
and CPG parameters (desired base velocity and turning rate
qg,w). The selection of Bézier parameters (for residual
trajectories) solely influences end-effector trajectories, while
CPG parameters (for nominal trajectories) alter desired base



movement. This action space ensures compatibility with a
task-independent locomotion controller across various tasks.

2) Task-independent Observation: The planner’s observa-
tion consists of task-independent elements consistent across
tasks, and task-specific elements unique to individual tasks.
Task-independent observations include the robot base’s mea-
surable feedback, including its angular position and velocity,
and the phase pair (sin g, cos ) for synchronizing with the
low-level locomotion controller’s periodic gait.

3) Additional Task-specific Observation: Each task-
specific planner requires unique observations from the envi-
ronment, either state or sensory feedback. HiLMa-Res allows
us to flexibly manage both observation types.

a) State Representation: In Dribble task, the robot uses
the relative position of the ball and the global heading
of the robot to dribble the ball, conditioned on the given
desired ball velocity (both speed and angle). For Dribble,
where controlling the ball’s velocity is crucial, we input a 4-
timestep history of the robot and ball positions into the policy
to infer the ball velocity without relying on noisy velocity
estimates. In NavLoad task, the robot is provided with robot
pose and load position, conditioned on the navigation target,
all in the global frame, to navigate the load to the target. We
do not provide history as input in this position-based task.

b) Vision Representation: In the task of StepOStone,
obtaining an accurate state estimator and acquiring a precise
height map that correctly labels the scattered stones could be
difficult on a quadrupedal robot with onboard sensors. There-
fore, the robot directly leverages its raw and downsampled
depth vision from the ego view to learn to extract features
related to the task.

4) Reward: The planning agent’s reward ri at each
timestep k is task-specific within the hierarchical framework.
Thanks to the HiLMa-Res, we are able to provide simple
task objectives without worrying the complexity of motion
control, streamlining task learning and minimizing complex
reward-tuning efforts present in end-to-end methods.

a) Dribble: The reward is to encourage minimizing
the tracking error of the desired linear velocity and moving
direction of the ball. We also include a proximity term to
encourage the robot to stay close to the ball. Specifically,
T ose = €XP(—0bandoan) Where dyan is the distance between
the robot and the ball and oy, > 0 is a hyperparameter.

b) StepOStone: The rewards are given for not stepping
on stones or contacting with its calf. Specifically, 72, . = 0
if any leg is in contact, 1 otherwise. Similarly, rgepping = 0
if any leg steps on an object, 1 otherwise. The weights are
0.7, 0.3 respectively.

¢) NavLoad: We encourage the change of the distance
between the load and the goal location. 2 =\ = = Adjpaq =
dk—1,10ad — Ak l0ad> Where d is the Euclidian distance between
the goal and the load. We also include a proximity term
formulated the same as the dribbling task, i.e.,
exp(_aloaddload) .

B. Training for Different Tasks

Using the HiLMa-Res, we explore different setups of the
RL training, ranging from more capable but data-hungry
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algorithms that are mainly limited to simulation to data-
efficient methods that can leverage real-world data.

1) Tasks for State-based Policy: Since the Dribble planner
incorporates only a short history of the ball’s position, we use
an MLP with three hidden layers of dimensions [128, 64, 32]
and ELU activation. Trained via PPO in Isaac Gym, we
simulate a dragging force on the ball introduced in [2] to
facilitate zero-shot transfer from simulation to the real world.

2) Tasks for Vision-based Policy: Since the StepOStone
policy directly uses depth vision, we firstly process the
visual input via a CNN encoder with the first layer being
convolution of size (kernel, filter) (5,32), second layer being
Max Pooling of size (2,2), third layer being convolution
of (3,64), ReLU activation, and a linear layer that maps
the visual data into a latent space of hidden size of 64.
Temporal features are later captured by a GRU with the
same hidden size. It is then combined with state-based
observation, and further processed by two MLP layers with
hidden sizes of (64,32) and ELU activation. Unlike prior
works that have to first train in state space and then transition
to vision via teacher-student methods due to their low sample
efficiency [20], [25], our efficient controller allows for direct
end-to-end training with depth input in simulation by PPO
in just five hours wall time. After training, the vision-based
planner can be directly transferred to the real world.

3) Tasks that Requires Real-World Data: In the NavLoad
task, we use a data-efficient DroQ [26] algorithm to learn
from real-world data. The actor network is an MLP whose
first hidden layer has 128 ReLU units and the second has
64 Tanh units. The critic network is a larger MLP with
(256, 128) hidden neurons, ReLU activation, and LayerNorm
before the activation function. we leverage RLPD [27], [28]
to fasten the real-world training. First, we train the policy in
simulation with DroQ (denoted as the base policy) and use
this base policy to perform rollouts in the real world. We
collect a replay buffer of 10,000 transitions. Then, we train
a new policy from scratch using DroQQ whose replay buffer
is combined with both data collected by the base policy and
the newly collected data from the real world, with a ratio
of 70% : 30%. This could facilitate efficient learning in the
real-world environment as described in [27].

VI. EXPERIMENT RESULTS

Having presented details on the development of HiL.Ma-
Res, in this section we evaluate the HiLMa-Res policies
for different loco-manipulation tasks extensively in both
simulation and the real world. Due to the paper page limit, we
use NavLoad task as an example for extensive benchmark,
as it is more challenging, and use Dribble and StepOStone
as extension examples in the real world.

A. Navigating a Load

We first benchmark the performance of different methods
for the NavLoad task in high-fidelity Gazebo simulation
which provides a controlled environment. Then, we report
real-world training results, followed by a discussion on the
benefits of HiLMa-Res compared to the baseline methods.
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Fig. 4: Recorded data during NavLoad experiments, along with snapshots capturing the robot’s behavior during its first interaction with
the load. (a) Zero-shot transfer of the base policy trained in simulation, the robot tends to have a large detour to move the load to the
target due to a large sim-to-real gap (such as friction, sensor noise, etc). (b) Training with real-world data by RLPD, the robot first adjusts
its pose and then pushes the load along the direction of the goal, with shorter path and operation time. This showcases the advantages of

HILMA-Res in the fine-grained manipulation task that requires efficient training from real-world data.

T 30 T
A i 180
— 2nd Turn = Detection
E Cmd 20 2 Error
o 8 90|~ -
g oL 1st Turn B E .
= Cmd o .
13 10 £ . p - Ball
=~ @ Ball = M Robot
0] WAV | - i
— Robot s 0 = = = Command
(0] = \ \ [ l | :

3 2 1 0 ..
Position y [m]  Time [s]

(a) Recorded ball, robot position, and
robot velocity trajectory

Time [s]

(b) Recorded velocity direction data.

30

(c) Snapshots of quadruped dribbling the ball.

Fig. 5: Visualization of real-world ball dribbling experiments, using the proposed HILMA-Res framework. The quadruped can perform
a sharp U-Turn within a narrow space of less than 3.3 meters in width. This demonstrates that the HILMA-Res can enable agile loco-
manipulation maneuvers that can be directly transferred from simulation to the real world.

1) Baseline: We compare the HiLMa-Res method against
three popular end-to-end baselines on the NavLoad task. The
baselines include:

e Reward Shaping: This baseline adopts a reward scheme
from [29] without reference motions and adds task
reward directly to the original reward terms.

e Adversarial Motion Prior (AMP): This baseline is
adopted from [30] and leverages adversarial imitation
learning to learn from reference motions.

e Motion Tracking (MT): This baseline learns locomo-
tion by tracking a given end-effector trajectory while
improving the task reward [21]. In implementation, we
adopt the locomotion controller of HiLMa-Res without
Bezier residuals and CPG commands, and add task-
specific observation and reward for this specific task.

These baselines reflect the state-of-the-art end-to-end loco-
motion controller, which has the potential to be extended to
individual loco-manipulation tasks using task-specific policy.
We train each policy until it converges and achieves compa-
rable success rates in training environments (Isaac Gym).

2) Simulation Benchmarking: First, we benchmark the
performance of HiLMa-Res against other methods in a high-
fidelity Gazebo simulation. Each method is tested for four
different goals (1-meter in front, behind, left, or right of
the load) with two attempts per goal, while the robot starts
I-meter behind the load at each reset. As shown in Ta-
ble [, HiLMa-Res outperformed all end-to-end comparison

methods in success rates. Specifically, the Reward Shaping
method struggles to perform effective movement patterns
during the sim-to-sim transfer, quickly losing balance and
only kicking the load by chance. AMP manages to move
when the load is distant but faces difficulties in stabilizing
the body (being confused about which motion the robot
should exert) as it approached the load, likely due to mode
collapsing in adversarial learning. The MT baseline can move
the loads to some extent but has trouble balancing motion
imitation and task rewards, leading to unstable learning
and evaluation performance. In contrast, HiLMa-Res, with
its stable locomotion controller and focused task planner,
completes the task without issues, highlighting the advantage
of a hierarchical approach for complex tasks.

3) Real World Training and Evaluation: We further test
HiLLMa-Res for NavLoad in the real world. In the experi-
ments, we utilize a localization system using Ultra-wideband
(UWB) to measure the robot and load’s positions and the
robot’s heading in the global framework. When we apply
the simulation-trained base policy to real hardware, a notable
drop in both success rates and efficiency is witnessed, due to
the load’s shape not being a perfect cube as in the simulation
and the high noise in localization when the robot gets
close to the load, leading to inaccurate pushes and frequent
misses, as shown in Fig. Ha). To address these challenges,
we utilize the RLPD algorithm to train with real-world
data. The training from scratch with the RLPD algorithm
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Fig. 6: Snapshots of two real-world experiments on StepOStone. The robot can walk through the randomly positioned small cluttered
stones, employing a dynamic trotting gait. The zoom-in images emphasize the robot’s ability to sidestep obstacles by adjusting its swing
legs. Note that some of the fall-down stones are caused by the impact variation when the legs make contact with the ground.

Method | Success Rate (%) | Average Time (s)

Sim-to-Sim Transfer

Reward Shaping | 25 | 1.9

AMP \ 0 \ /

Motion Tracking | 62.5 | 40.94

Ours | 100 | 232
Real World Experiments

Ours (Base Policy) | 80 | 57.75

Ours (Trained in Real) | 100 | 47.6

TABLE II: Benchmark of the NavLoad task in sim-to-sim transfer
and real experiments. We find that all end-to-end methods cannot
achieve a high success rate in simulation other than the one it was
trained on, highlighting the difficulty of achieving both robustness
and high task performance in end-to-end training. In comparison,
our method achieves a 100% success rate in simulation and can be
transferred at an 80% success rate zero-shot in real environments.
Furthermore, we are able to achieve a 100% success rate in the real
environment after training with real data from scratch directly with
RLPD algorithm.

takes just 9 minutes and 1,000 steps, leading to notable
improvements in success rates and efficiency for real-world
load navigation tasks. Compared to the base policy, which
frequently misses the load and makes wide and inefficient
turns, the policy trained with real-world data navigates more
carefully. Shown in Fig. ff[b), this strategy increases effective
kicks and successful load interactions. On missing the load,
it also adjusts with tighter turns for faster retries, showing
better robustness to sensor noise. These result in a shorter
path to reach the target. This efficiency underscores the
benefits of a hierarchical approach, enabling efficient and
reliable real-world task learning.

B. Ball Dribbling

In this Dribble task, we use the robot onboard stereo
fisheye cameras to detect the ball and calculate its rela-

Trial # | Stones Passed | Stones Fell | % Fell
1 \ 2 \ 2 | 9.09
2 \ 20 \ 3 |15

3 \ 19 \ 2 | 105
4 \ 19 \ 3 | 1538
Average | 20 | 2.5 | 125

TABLE III: Results of four trials on the StepOStone task in real-
world experiments. We report the number of stones the robot passed,
and the number of stones which the robot steps on or hits. The robot
avoids on average 87.5% of the stones.

tive position. With a proprioceptive state estimator, we can
determine the robot’s heading in the world frame for this
short-term task. Our results as shown in Fig. [ demonstrate
the dribbling planner’s effectiveness, capable of executing a
sharp U-Turn with the ball in spaces as narrow as 3.3 meters.
The heading profile indicates a smooth approach to the target
direction. Despite a significant ball detection error at 16
seconds, the planner is still robust and goes directly to the
ball’s position, with the help of its history observations that
help to filter noisy measurements. The robot can dribble the
ball at varying speeds, though the error in velocity tracking
is large due to the gap in the physical properties of simulated
and real soccer balls. Without a more accurate measurement
system, we cannot learn the task directly in the real world
due to noisy reward functions.

C. Step Over Stone

In the StepOStone task, we utilize a depth camera, down-
sampled to 43 x 29 to match our training setup, and apply a
simulation-trained policy directly in real-world tests. These
tests involve randomly placed wood blocks ranging from 3cm
to 5cm wide and 5¢m to 10cm tall on a padded surface.
In Fig. on the center left snippets, the robot exhibits
deliberate toe trajectories to bypass a tall wood block by



adjusting the CPG trajectories (nominally 10cm high, risking
collision) using Bézier residuals, enabling it to step over and
land safely beyond the obstacle. On the center right snippets,
the planner adeptly retracts the left front leg, preventing
collision with another tall block, unlike the expected path
of the nominal curve. Quantitatively, the robot can step
over 87.5% of the wooden blocks on average across four
trials, as recorded in Table These results demonstrate the
proposed framework’s capability in mastering precise foot
placements, notably in the StepOStone task, and underscore
the locomotion controller’s accurate end-effector tracking.

VII. CONCLUSION AND FUTURE WORK

We have presented HiLMa-Res, a general hierarchical
RL framework for loco-manipulation tasks. It integrates
a task-independent operational space locomotion controller
for tracking both robot base and end-effector trajectories,
along with task-specific manipulation planners for down-
stream tasks. HiLMa-Res effectively handles various loco-
manipulation tasks, demonstrating flexibility in real-world
training, agile movements, and precise foot placements
through policy hierarchy and B’ezier residual learning. Com-
pared to end-to-end methods, HiLMa-Res improves sample
efficiency and separates planner from sim-to-real challenges.

Future work could extend HiLMa-Res to static motions,
such as button pushing, or different gaits other than trotting,
both of which can be represented by varying CPG parame-
ters. Additionally, HiLMa-Res could be further extended to
loco-manipulation tasks with humanoid robots.
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