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Abstract— Developing robust walking controllers for bipedal
robots is a challenging endeavor. Traditional model-based loco-
motion controllers require simplifying assumptions and careful
modelling; any small errors can result in unstable control. To
address these challenges for bipedal locomotion, we present
a model-free reinforcement learning framework for training
robust locomotion policies in simulation, which can then be
transferred to a real bipedal Cassie robot. To facilitate sim-to-
real transfer, domain randomization is used to encourage the
policies to learn behaviors that are robust across variations in
system dynamics. The learned policies enable Cassie to perform
a set of diverse and dynamic behaviors, while also being more
robust than traditional controllers and prior learning-based
methods that use residual control. We demonstrate this on
versatile walking behaviors such as tracking a target walking
velocity, walking height, and turning yaw. (Video1)

I. INTRODUCTION

Many environments, particularly those designed for hu-
mans, are more accessible by legged systems. However,
bipedal robot locomotion involves several control design
challenges due to high degrees-of-freedom (DoFs), hybrid
nonlinear dynamics, and persistent but hard-to-model ground
impacts. Classical model-based methods [1]–[3] for stabiliz-
ing and controlling bipedal systems tend to require careful
modeling and usually lack the ability to adapt to changes in
the environment. Recent deep reinforcement learning (RL)
based methods are promising solutions to these issues as RL
is able to leverage the full-order dynamics of the system to
produce more agile behaviors.

Our approach to bipedal locomotion utilizes RL to train
robust policies to imitate gaits from a gait library, using
randomized simulated training to acquire controllers that can
successfully control a person-sized bipedal robot Cassie in
the real world. Recent RL methods on Cassie [4], [5] train
policies to specify corrections to reference motions recorded
from a model-based walking controller. While this type of
residual control [6] can produce stable walking behaviors,
it often requires a pre-existing controller, and the resulting
behaviors tend to be limited to stay close to the original
reference motions. To overcome this limitation, our training
system uses a gait library of diverse parameterized motions
based on Hybrid Zero Dynamics (HZD) [3], which increases
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1Video: https://youtu.be/goxCjGPQH7U

(a) Lower Walking Height (b) Recover to Normal Height

(c) Push Recovery (Front) (d) Push Recovery (Back)

Fig. 1: Our system leverages reinforcement learning to train robust
parameterized locomotion controllers for a bipedal Cassie robot.
The controller can vary parameters such as walking velocity and
height, while also being robust to significant external perturbations.

the diversity of behaviors that the robot can learn. This
increase in diversity serves two purposes. First, it enables the
online control of the robot using a low dimensional param-
eterization of different gaits. Second, it improves robustness
by enabling the robot to learn a larger variety of potential
motions.

Due to the size and instability of real bipedal robots,
it is particularly dangerous to perform RL directly on the
physical system. We instead leverage techniques from sim-
to-real transfer to train policies in a simulated environment,
which are then evaluated in another higher fidelity simulator,
before finally being deployed on the real robot. We found that
additional dynamics randomization techniques are necessary
to produce robust controllers, and these enable our system
to learn robust parameterized controllers, which are then
evaluated on Cassie with a collection of different motions
and challenging scenarios, as shown in Fig. 1.

The primary contribution of this work is the development
of a reinforcement learning based controller as shown in
Fig. 2 that results in a more diverse and robust walking
control on the Cassie robot. More specifically, we develop
an end-to-end versatile walking policy that combines a
HZD-based gait library with deep reinforcement learning to
enable a 3D bipedal robot Cassie to walk while following
commands for frontal and lateral walking speeds, walking
height, and turning yaw rate. The proposed learning-based
walking policy notably expands the feasible command set
and safe set over prior model-based controllers, and improves
stability during gait transitions compared to a HZD-based
baseline walking controller. The learned policies are robust
to modelling error, perturbations, and environmental changes.
This robustness emerges from our training strategy, which
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trains a policy to imitate a collection of diverse gaits, and
also incorporates domain randomization. The learned policy
can be directly transferred to other simulators, such as a
more accurate simulator on SimMechanics, as well as to
a real robot. Using this proposed policy, Cassie is not
only able to reliably track given commands in indoor and
outdoor environments, but to stay robust to unmodelable
malfunctioning motors, changes of ground friction, carrying
unknown loads, and demonstrating agile recoveries from
random perturbations, as shown in the video.

A. Related Work

Traditional approaches for locomotion of bipedal walking
robots are typically based on notions of gait stability, such
as the ZMP criterion [1] and capturability [2], simplified
models [7]–[9], and constrained optimization methods [10]–
[12]. These methods have been shown to be effective for
controlling various humanoid robots with flat feet, but the
resulting motion tends to be slow and conservative. Hybrid
Zero Dynamics (HZD) [3], [13]–[17] is another control
technique for generating stable periodic walking gaits based
on input-output linearization. Our work, which is based on
reinforcement learning, is not constrained by the requirement
of a precise model and stabilization to a periodic orbit, as
is the case for HZD, which enables our method to produce
more diverse behaviors.

a) RL-based Control for Legged Robots: Reinforce-
ment learning for legged locomotion has shown promising
results in acquiring locomotion skills in simulation [18]–
[20] and in the real world [21]–[23]. Data-driven methods
provide a general framework that enables legged robots to
perform a rich variety of behaviors by introducing reference
motion terms into the learning process [20], [23], [24].
However, most previous RL-based work are deployed on
either multi-legged systems [23], [25], [26] or on low-
dimensional bipedal robots [27], [28], where learned motions
are typically quasi-static.

More recently, RL has been applied to learn agile walking
skills for Cassie. Model-based RL in [29], [30] attains a
velocity regulating adaptive walking controller on Cassie
in simulation. In [4], [5], reference motions combined with
model-free residual learning [6] are used to learn walking
policies that are able to reliably track given planar velocity
commands on Cassie in the real world. Residual control
structure used in the policy can speed up training, but the
resulting policy can only apply limited corrections to the
underlying reference trajectory. Moreover, a model-based
walking controller on Cassie is still needed to provide refer-
ence motions recorded from control outputs. This limits the
accessibility to the reference motions and therefore reduces
the diversity of learned behaviors. In addition, most of the
previous learning-based walking policies on Cassie do not
show significant improvement over traditional model-based
controllers. Also, they lack the ability to change the walking
height and turning yaw, which increases the complexity of
controller design but enables the robot to travel in narrow
environments. In our work, we show a clear improvement

Fig. 2: Proposed learning-based walking controller. The inputs of
the policy consists of desired gait parameter pd, desired turning yaw
velocity q̇dφ, a reference gait gr decoded by desired gait parameter
pd, observed robot states q̂o, ˆ̇qo from time step t-4 to t, and past
policy outputs which are desired motor positions qdm spanning from
t-4 to t-1. Current qdm is sent to joint-level controllers after passing
through a Low Pass Filter (LPF).

over model-based methods by examining the tracking per-
formance and robustness over a range of gait parameters.

b) Simulation to Real World Transfer: Sim-to-real
transfer is an attractive approach for developing policies,
which takes advantage of fast simulations as a safe and inex-
pensive source of data. Model-based methods require careful
system identification to bridge the reality gap [16], [17].
Randomizing the system properties in the source domain
in order to cover the uncertainty in the target domain has
allowed for solutions that use low-fidelity simulations for
learning-based methods [23], [28], [31]–[35]. In this paper,
we adopt domain randomization to overcome the sim-to-real
gap, without the need for any additional training on the robot.

II. PARAMETERIZED CONTROL OF CASSIE

We now present the Cassie bipedal robot, which is the
platform for our experiments and introduce a HZD-based
gait library of versatile walking behaviors on Cassie.

A. Cassie Robot Model

Cassie is a person-sized, dynamic, underactuated bipedal
robot with 20 DoFs, as shown in Fig. 1 and explained
in [17, Sec. II]. There are 10 actuated rotational joints
qm = [q

L/R
1,2,3,4,7]

T , which include abduction, rotation, hip
pitch, knee, and toe motors. There are also four passive
joints q

L/R
5,6 that correspond to the shin and tarsus joints.

Its floating base pelvis qp = [qx, qy, qz, qψ, qθ, qφ]
T has

3 transitional DoFs (sagittal, lateral, vertical) qx,y,z and 3
rotational DoFs (roll, pitch, yaw) qψ,θ,φ, and is defined as
the robot’s local reference frame. The full robot state q ∈ R20

consists of the state of each joint. Next, we define the
observable state qo ∈ R17, which is similar to q but excludes
the pelvis translational position qx,y,z , that can not be reliably
measured in the real world without external instrumentation.

B. Gait Library and Parameterized Control

To create a controller that can be directed online to
perform and transition between different motions, we pa-
rameterize the input to the system using a gait parameter p
that determines the desired gait. A gait g is a set of periodic
joint trajectories that encode a locomotion behavior [36]. In
this work, we use 5th order Bézier curves α to represent



TABLE I: Gait Library

q̇x q̇y
G [− 1,−0.8, . . . , 0.8, 1.0] [− 0.3,−0.24, . . . , 0.24, 0.3]

qz number of gaits
G [0.65, 0.685, . . . , 0.965, 1.0] 11× 11× 11 = 1331

smooth profiles for the 10 actuated joints. The Bézier curves
are normalized by 1 step period t. The gaits designed in this
paper consist of 2 steps, referred to as right stance and left
stance, and transitions between the steps are triggered by a
foot impact on the ground. The gait parameters chosen in
this work are forward velocity q̇x, lateral velocity q̇y and
walking height qz , i.e., p = [q̇x q̇y qz]

T ∈ R3. A gait
library G = {gi(α, t)} is constructed by indexing the ith

gait gi with its gait parameter pi. The optimization program
for constructing the HZD-based gait library is formulated
in CFROST [13] and the resulting gaits are described in
Tab. I [17]. The gait libray is later combined with an online
regulator to implement a parameterized walking controller
in [17, Sec. IV].

III. LEARNING WALKING CONTROL AND SIM-TO-REAL

Having an optimized gait library is not enough to control
bipedal robots without online feedback, we will next combine
the pre-computed HZD-based gait library with reinforcement
learning to develop a versatile locomotion policy π for the
Cassie. In a RL framework, an agent (e.g. Cassie), learns
through trial and error by interacting with the environment.
At each discrete time step t, the policy π (shown in Fig. 2)
observes a state st and a goal gt, and outputs an action
distribution π(at|st,gt). The agent then samples an action
at from the distribution and executes the action in the
environment, which results in a transition to a new state st+1

and goal gt+1, as well as a reward rt for that transition.

A. Cassie Simulation Environment

We developed a simulation environment for reinforcement
learning on Cassie, which is based on an open source
MuJoCo simulator [37], [38]. This subsection introduces the
design of the simulation environment which the reinforce-
ment learning agent interacts with.

1) Action Space: The action at = qdm specifies target
positions for the 10 motors on Cassie. In order to obtain a
smoother motion, the target positions are first passed through
a low-pass filter [23], as shown in Fig. 2, before being applied
to the motors. A joint-level PD controller generates torque
u for each motor on Cassie based on the filtered targets.

2) State Space: The state st = (qot−4:t,at−4:t−1) at time
t consists of two components. The first component consists
of the observable robot states qo = [qo, q̇o] at the current
time step t and the past 4 time steps. The second component
consists of the actions a from past 4 time steps. This history
of past observations and actions provides the policy with
more information to infer the system dynamics.

3) Goal: To train a policy to produce a desired reference
motion, target frames from the reference motion are provided
to the policy as input via a time-dependent goal gt. The
user command c is used to operate the robot online and it

is defined as c = [pd q̇dφ] = [q̇dx q̇
d
y q

d
z , q̇

d
φ] which includes

desired gait parameters pd and desired turning yaw velocity
q̇dφ. Given a desired gait parameter pd, a reference gait gr

is constructed by interpolating the parameterized gait library
with respect to pd as explained in Sec. II-B. The goal is then
specified by gt = (c(t), gr(t), gr(t + 1), gr(t + 4), gr(t +
7)), which includes 1) the current user commands, and 2)
reference motor positions qmr and velocity q̇rm for current
and sampled future time steps.

B. Reward Function

The reward function is designed to encourage the agent
to satisfy the given command while reproducing the cor-
responding reference motion from the gait library on the
dynamic robot system. The reward at each time step t is
given by:

rt = ωrot (1)

rot = [rmt , r
p
t , r

ṗ
t , r

r
t , r

ṙ
t , r

u
t , r

f
t ]
T (2)

ω = [0.3, 0.24, 0.15, 0.13, 0.06, 0.06, 0.06] (3)

The motor reward rmt encourages the policy to minimize the
discrepancies between the actual motor positions q̂m and the
reference motion qrm and is formulated as:

rmt = exp[−ρ1||qrm − q̂m||22]. (4)

where ρi is a scaling factor for the ith reward term. The
reward terms rpt , rṗt and rṙt follow the same formulation
as (4) and encourage the agent to track reference pelvis
translational position, translational velocity and rotational
velocity in robot local frame, respectively. The pelvis rotation
reward rrt leads Cassie to reduce the difference between
the reference rotation qrr and the actual one q̂r, and it is
formulated by rrt = exp[−ρ4||qrr	q̂r||22] where 	 denotes the
geodesic distance between two rotation angles. The torque
reward rut = exp[−ρ6||u||22] encourages the robot to reduce
energy consumption. Lastly, the ground reaction force reward
rft = exp[−ρ7||q̂f ||22] helps to minimize the vertical contact
forces q̂f . The weights of each reward term in ωi are
specified manually.

The desired roll and pitch velocity are always set to 0
to stabilize the pelvis, while the desired yaw velocity is
specified by the user command c(t). Furthermore, since no
desired position terms, e.g., pelvis translational and rotational
positions, are explicitly given, they are computed by integrat-
ing the corresponding desired velocity.

Note that the reference motion from the gait library does
not encode turning yaw information. Therefore, including
non-zero desired turning yaw in the reward can encourage
the agent to develop walking behaviors that are not provided
by the reference motions.

C. Domain Randomization

In order to improve the robustness of the policy and
bridge the gap between the simulation and the real world, the
dynamics of the environment is randomized during training
in simulation. The randomization regiment is designed to



TABLE II: Dynamics Properties and Sample Range.

Parameter Range Unit
Link Mass [0.75,1.15] × default kg

Link Mass Center [0.75,1.15] × default m
Joint Damping [0.75,1.15] × default Nms/rad

Ground Friction Ratio [0.5, 3.0] 1
Motor Rotation Noise [-0.1, 0.1] rad

Motor Angle Velocity Noise [-0.1, 0.1] rad/s
Accelerometer Noise [-0.4, 0.4] m/s2

Gyro Rotation Noise [-0.1, 0.1] rad
Gyro Angle Velocity Noise [-0.1, 0.1] rad/s

Communication Delay [0, 0.03] sec

address three major sources of uncertainty in the environ-
ment: 1) modelling error of the robot and the environment, 2)
sensor noise, and 3) communication delay between the policy
and the joint-level controller. These dynamics properties are
parameterized as µ, whose values are varied between the
ranges specified in Tab. II.

D. Learning Model

The objective of reinforcement learning is to maximize the
total expected reward over trajectories τ ∼ pθ(τ)

J(θ) = Eτ∼pθ(τ)

[
T∑
t=0

γtrt

]
(5)

where pθ(τ) is the distribution of trajectories τ =
{s0,a0, r0, . . . , sT ,aT , rT } subject to policy πθ(at|st,gt),
θ is the parameters of the network policy, γ is the discount
factor, and T is the horizon of each episode. We use
Proximal Policy Optimization (PPO) [39] to train the policy
in simulation with networks with 2 hidden layers of 512
tanh units for both the policy and value function.

For the policy network, the input contains observed state
sot and goal gt, as formulated in Sec. III-A. In sot , the
observed robot state qot is with added noise and delay
introduced in Sec. III-C. The policy network uses tanh as
the activation function for the last layer. The output of the
policy network is a 10 dimensional vector represented by a
Gaussian action distribution N (mπ(a|s),Σπ) with a learned
mean mπ(a|s) and fixed standard deviation Σπ = 0.1I . The
action a (i.e., desired motor positions) is sampled from this
output distribution.

The value network outputs a scalar value V (st,gt) rep-
resenting the expected return of the policy given state st
and goal gt. The value network is provided access to the
ground truth state sgt, Moreover, the randomized dynamic
parameters µ described in Sec. III-C are also provided as
inputs to the value function.

E. Training Setup

The policy operates at 30 Hz, while the joint-level PD
controller illustrated in Fig. 2 runs at 2000 Hz. The maxi-
mum number of time steps for each episode is designated
to be T=2500, corresponding to approximately 83 s. In
each episode, a new command c(t) = [q̇dx q̇dy qdz , q̇

d
φ]

is uniformly sampled every 8 s, and remains unchanged
during the 8 s window. The command range is from
[−2,−0.8, 0.65,−π/6]T to [2, 0.8, 1, π/6]T . The first com-
mand in each episode is always set to a random walking

forward velocity with 0 yaw velocity at a normal height
above 0.9 m. Note that the range of training commands is
larger compared to the gait parameter provided in Tab. I. In
this way, the agent is able to learn to follow a command that
is out-of-range of gait parameters and thus learns behaviors
beyond what the gait library can provide. An episode ends
when the maximum number of time steps is reached, or early
termination conditions have been triggered. Early termination
is triggered if the height of the pelvis drops below 0.55 m,
and if the tarsus joints qL/R5 hit the ground.

Dynamics randomization presented in Sec. III-C is in-
troduced gradually over the course of training through a
curriculum. The curriculum helps to prevent the policy from
adopting excessively conservative sub-optimal behaviors. For
example, if training starts with the full range of randomiza-
tions detailed in Table II, the policy is prone to adopting
strategies that prevent the robot from falling by simply
standing in-place. In a highly dynamic environment, standing
can be more stable than walking, and is therefore easier to
learn, but is nonetheless sub-optimal. Therefore, over the
course of the first 2000 training iterations, the upper and
lower boundaries of the randomized dynamics parameters are
linearly annealed from fixed default values to the maximum
ranges specified in Tab. II.

IV. EXPERIMENTS

The walking policy is trained with a MuJoCo simulation
of the Cassie robot [37]. The performance of the learned
policy is evaluated in three domains: MuJoCo, MATLAB
SimMechanics, and on Cassie. Performance is first evaluated
in the MuJoCo simulator, which is the domain used for train-
ing. Later, SimMechanics provides a safe and high-fidelity
simulated environment that closely replicates the physical
system to extensively test the learned policy. However, the
high-fidelity simulation is slower than real-time by an order
of magnitude, so it is primarily used for testing. Finally, the
policy is deployed and validated on the real Cassie robot.

A. Learning Performance

To evaluate the effects of the randomization curriculum,
we compare the performance of policies trained with and
without the curriculum. Fig. 3a compares learning curves for
the different policies. The policy trained with the random-
ization curriculum (CR) starts training with a small amount
of randomization, which is then gradually increased over the
course of training. The policy trained without the curriculum
(NCR) starts training with the full range of randomization.
The large amount of randomization at the start of training
leads the policy to adopt an excessively conservative and
sub-optimal behavior. The policy trained with the curriculum
exhibits substantially faster learning progress, while also
achieving a higher return.

The effects of residual control are evaluated by comparing
the performance of our policy that uses non-residual control
(NRC), with a policy that uses residual control (RC) [4],
[5]. Learning curves comparing the different policies are
available in Fig. 3b. In the absence of external perturbations,



(a) (b)

Fig. 3: Comparison between (a) proposed Curriculum (CR) and
Non-Curriculum (NCR) methods and (b) proposed Non-Residual
Control (NRC) and Residual Control (RC) used in previous
work [5]. Our proposed method shows best overall training per-
formance in terms of learning speed and converged rewards. The
corresponding total samples for the curriculum is 6.6e7, while the
NCR model has full range of dynamics randomization from the
start of training.

the performance of the two policies is similar, with the non-
residual policy performing marginally better than the residual
policy. However, as we show in the following experiments,
our non-residual policy with dynamics randomization is more
robust than the residual policy, which may be due to the
non-residual policy’s greater flexibility to deviate from the
behaviors prescribed by the reference motion in order to
recover from perturbations.

B. Robustness Analysis in High-Fidelity Simulation

A Feasible command set is a set of input gait parameters
pd that will not cause a controller to fail. A safe set is
defined as a set of gait parameters that a controller actually
achieves on the robot while maintaining a stable walking
gait. During each iteration, a gait parameter pd is provided
to the controller as a command in MATLAB SimMechanics,
if the controller succeeds in maintaining a stable gait for 15
seconds, then pd will be added to the feasible command set
and the actual achieved gait parameter p̂ will be added to the
safe set. Through extensive tests of a controller, the result-
ing feasible command set and safe set provide informative
metrics to evaluate the control performance and robustness
of the controller when deployed on the robot. Typically,
a walking controller with a larger feasible command set
can handle more scenarios, and a controller with a larger
safe set can achieve more dynamic motions. Moreover, a
controller with better tracking performance can result in a
similar shape between the feasible command set and safe set,
as the difference between these two sets indicates tracking
errors between pd and p̂.

We compare the feasible command sets and safe sets be-
tween the learned policy and prior HZD-based variable walk-
ing height controller developed in [17] and based on [16].
The procedures for generating the command sets and safe
sets of these two controllers are identical, and the testing
range for pd is set to be between [−1.1, −0.6, 0.65]T and
[2, 0.6, 1.0]T , with a resolution of [0.1, 0.1, 0.05]T . The
resulting feasible command sets and safe sets are shown in
Fig. 4. As shown in Fig. 4a, the proposed RL-based controller
is able to cover almost the entire testing range, while the
HZD-based controller can only handle a smaller bowl-shape
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Fig. 4: Comparison of proposed commands (Feasible Command
Set) and achieved commands (Safe Set) between HZD-based
controller [17] and proposed RL-based controller. Our RL-based
controller can handle more tracking commands than the HZD-based
baseline and thus results in a larger feasible command set. The safe
set of RL-based policy is also larger in the sagittal walking velocity
ˆ̇qx and walking height q̂z direction. The tracking performance of
the RL-based policy also shows advantages as the shapes of feasible
command set and safe set are closer.

region. Quantitatively, the feasible command set of the RL-
based walking controller is more than 4 times larger than
HZD-based controller. Moreover, as illustrated in Fig. 4b,
the RL-based walking controller covers a broader safe set
than the HZD-based controller. In practice, this means that
the RL-based controller can achieve faster forward and
backward walking (from −1.2 m/s to 1.2 m/s) than HZD-
based one (below 1 m/s). Although Fig. 4b shows that the
HZD-based controller can achieve walking gaits with lower
heights (0.6 m) than the RL-based one (0.65 m), the tracking
error of the HZD-based controller is not negligible as its
minimum feasible walking height command can only reach
0.7 m while RL-based one can go to 0.65 m. Therefore, the
RL-based controller exhibits better performance on tracking
commands. Moreover, by inspecting the relationship between
Fig. 4a and Fig. 4b, we find that the RL-based controller can
handle the commands that are outside of the given gait library
in Tab. I, e.g., 2 m/s in the sagittal direction. The resulting
actual velocity ˆ̇qx is around 1.2 m/s, which is also outside
of the range seen in the gait library. With the standard HZD-
based controller, the robot only approaches 1 m/s when it
is being given a 2 m/s command, due to a large tracking
error. This shows that the RL-based controller is not strictly
tracking the commands, and instead finds a more optimal gait
that is close to the commands while maintaining stability.

C. Robustness in the Real World

The deployed policy on Cassie in the real world can
reliably control the robot to perform various behaviors, such
as changing walking heights in Fig. 1a,1b, fast walking
in Fig. 5a, walking sideways in Fig. 5b, turning around
in Fig. 5c. Moreover, the policy also shows robustness to
the changes of the robot itself and the environment.

1) Modeling Error: During the experiments in this paper,
a malfunction caused two motors on the Cassie to not work
properly. Specifically, the right rotation qR2 and right knee
qR4 motors were partially damaged, making them unable
to produce as much torque as the corresponding motors
on the left side or in the simulation. Following this mal-



(a) Fast Walking Outdoor (b) Side Walking (c) Turning

(d) Recover from Foot Sliding (e) Unknown Load (f) Anti-Slip (g) Slippery

Fig. 5: Experiment Results. The proposed learned walking policy extensively on Cassie in real world in different scenarios. In the
experiments, the policy enables the Cassie to perform various agile behaviors such as fast forward and backward walking, sideways
walking, changing walking height, and turning around. Moreover, empowered by the proposed policy, the robot is able to recover from
random perturbation and also able to adapt to change different ground frictions and unknown load.

Fig. 6: Comparison of robustness to perturbation among 3 different
methods in MuJoCo simulation. Non-Residual Controlled Gait
Library (NRC+GL) is trained with the gait library; Non-Residual
Controlled Single Gait (NRC+SG) and Residual Controlled Single
Gait (RC+SG) are trained with only one single gait, which is also
the test motion. A 6 DoF force is randomly applied on the pelvis
with probability 0.15β%. The Normalized Return is computed by
the mean reward of 32 roll-outs for each model for each β.

function, model-based walking controllers, such as the fac-
tory default controller and the HZD-based variable walking
controller [17], were no longer able to reliably produce a
walking gait. The baseline HZD-based controller was no
longer able to recover to a normal height after a reduction
in walking height, since the right leg was weaker than the
left leg. However, by training with dynamics randomization
(Sec. III-C), especially the damping ratio of each joint, the
proposed learned walking controller could control the robot
even with partially damaged motors. Indeed, this policy was
able to successfully control the robot the very first time it
was deployed, without additional tuning.

2) Perturbation: To show that our approach is more ro-
bust, three quantitative experiments are done in the MuJoCo
simulator: 1) a non-residual policy trained with the gait
library, 2) a non-residual policy trained using a single refer-
ence motion from the gait library, and 3) a residual policy
trained with the same single gait as the previous work [5]. All
policies are trained without domain randomization. During
the evaluation, the pelvis is perturbed randomly by a 6 DoF
force with a probability of 0.15%β at each time step lasting
for a random time span sampling from [0, 0.8β] s, where

β ∈ [0, 1] stands for perturbation intensity. The achieved
return of each model is illustrated in Fig. 6. When larger
perturbations like β ∈ {0.8, 1} are applied, the model trained
by the proposed method shows significant advantages over
other models.

To further demonstrate the robustness in the real world
qualitatively, we randomly push Cassie with a rod in different
directions, e.g. from the front of the pelvis in Fig. 1c, from
the back in Fig. 1d, and from left and right of the pelvis. The
feet of Cassie are also perturbed during walking, including
stepping on the gantry in Fig. 5d. In addition an unknown
load is applied in Fig. 5e and changes in ground friction
in Fig. 5f,5g. The proposed learned policy shows improved
robustness over previous work across all scenarios.

V. CONCLUSION AND FUTURE WORKS

To our knowledge, this paper is the first to develop a
diverse and robust bipedal locomotion policy that can walk,
turn and squat using parameterized reinforcement learning.
In this work, a model-free reinforcement learning method is
proposed to train a policy that is able to control Cassie to
track given walking velocities, walking heights, and turning
yaw velocities, by imitating reference motions decoded from
a HZD-based gait library. In contrast to prior work on
reinforcement learning for bipedal locomotion with Cassie,
our method does not utilize a residual control term, providing
improved flexibility, and instead uses the HZD-based gait
library to provide references for diverse training. This results
in better performance and robustness, as well as more sophis-
ticated recoveries. The proposed learning method shows ben-
efits over a baseline model-based walking controller, produc-
ing a larger feasible command set, a larger safe set, and better
tracking performance. In the real world experiments, the
policy also demonstrates considerable robustness, effectively
controlling Cassie, even with malfunctioning motors, to walk
over floors with different friction and rejecting perturbations.
An exciting future direction is to explore how more dynamic
and agile behaviors can be learned for Cassie, building on
the approach presented in this work.
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