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Figure 1: Neural network control policies trained for various simulated planar characters.

ABSTRACT
The use of deep reinforcement learning allows for high-dimensional
state descriptors, but little is known about how the choice of action
representation impacts learning and the resulting performance.
We compare the impact of four di�erent action parameterizations
(torques, muscle-activations, target joint angles, and target joint-
angle velocities) in terms of learning time, policy robustness, motion
quality, and policy query rates. Our results are evaluated on a gait-
cycle imitation task for multiple planar articulated �gures and
multiple gaits. We demonstrate that the local feedback provided by
higher-level action parameterizations can signi�cantly impact the
learning, robustness, and motion quality of the resulting policies.
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1 INTRODUCTION
The introduction of deep learning models to reinforcement learning
(RL) has enabled policies to operate directly on high-dimensional,
low-level state features. As a result, deep reinforcement learning
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(DeepRL) has demonstrated impressive capabilities, such as devel-
oping control policies that can map from input image pixels to
output joint torques [Lillicrap et al. 2015]. However, the motion
quality and robustness often falls short of what has been achieved
with hand-crafted action abstractions, e.g., Coros et al. [2011]; Gei-
jtenbeek et al. [2013]. While much is known about the learning
of state representations, the choice of action parameterization is a
design decision whose impact is not yet well understood.

Joint torques can be thought of as the most basic and generic rep-
resentation for driving the movement of articulated �gures, given
that muscles and other actuation models eventually result in joint
torques. However this ignores the intrinsic embodied nature of
biological systems, particularly the synergy between control and
biomechanics. Passive dynamics, such as elasticity and damping
from muscles and tendons, play an integral role in shaping mo-
tions: they provide mechanisms for energy storage, and mechanical
impedance which generates instantaneous feedback without requir-
ing any explicit computation. Loeb coins the term pre�exes [Loeb
1995] to describe these e�ects, and their impact on motion control
has been described as providing intelligence by mechanics [Blickhan
et al. 2007]. This can also be thought of as a kind of partitioning of
the computations between the control and physical system.

In this paper we explore the impact of four di�erent actuation
models on learning to control dynamic articulated �gure loco-
motion: (1) torques (Tor); (2) activations for musculotendon units
(MTU); (3) target joint angles for proportional-derivative controllers
(PD); and (4) target joint velocities (Vel). Because Deep RL methods
are capable of learning control policies for all these models, it now
becomes possible to directly assess how the choice of actuation
model a�ects learning. We also assess the learned policies with re-
spect to robustness, motion quality, and policy query rates. We show
that action parameterizations which incorporate local feedback can
signi�cantly improve learning speed and performance, while still
preserving the generality a�orded by torque-level control. Such
parameterizations also allow for more complex body structures and
subjective improvements in motion quality.

Our speci�c contributions are: (1) We introduce a DeepRL frame-
work for motion imitation tasks and evaluate the impact of four
di�erent actuation models on the learned control policies according
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to four criteria; (2) We propose an optimization approach that com-
bines policy learning and actuator optimization, allowing neural
networks to e�ectively control complex muscle models.

2 RELATEDWORK
While signi�cant progress has been made in recent years, motion
control of physically simulated characters remains a challenging
problem in computer animation. Towards this endeavor, a diverse
catalog of controllers have been proposed to tackle various tasks,
such as locomotion, manipulation, and other acrobatic skills [An-
drews and Kry 2012; Bai et al. 2016; Coros et al. 2009, 2010; Liu
et al. 2012]. When constructing controllers, a crucial design deci-
sion is the choice of action parameterization, i.e. control signals
with which a controller directs the behaviour of a character. Finite
state machines (FSM) have been successfully applied to locomotion
for human and nonhuman characters [Coros et al. 2008; Peng et al.
2016; Yin et al. 2007]. These models utilize an FSM to organize the
phase of a motion into behaviorally similar states, from which a
compact set of parameters can be exposed to provide a high-level
action abstraction. Examples of action parameters include target
joint angles for key joints (e.g. hips and knees), target velocities, vir-
tual forces, end-e�ector positions, and other task-speci�c variables.
However, crafting FSMs requires signi�cant domain knowledge, of-
ten resulting in task-speci�c controllers. Alternatively, model-based
methods leverage access to the equations of motion to directly solve
for joint torques via inverse dynamics [de Lasa et al. 2010]. The
resulting motions can be parameterized by specifying high-level
objectives such as footstep positions and center of mass trajectories
[Mordatch et al. 2010]. Biologically-inspired muscle models have
also been explored for locomotion [Wang et al. 2012]. However,
due to the often high-dimensional nature of muscle models, instead
of controlling muscles directly through activations or excitations,
previous methods incorporate techniques such as Jacobian trans-
pose control and inverse-dynamics to abstract away the low-level
muscle dynamics [Geijtenbeek et al. 2013; Lee et al. 2014]. Other
examples of action parameterizations include joint velocities for
skilled bicycle stunts [Tan et al. 2014], mixed use of feed-forward
torques and joint target angles [Coros et al. 2011], and joint target
angles computed by learned linear (time-indexed) feedback strate-
gies [Liu et al. 2016]. Though these models have been successful in
reproducing a rich repertoire of motions, the task-speci�c control
structures and assumed knowledge of the dynamics often limit a
controller’s ability to generalize to new skills and characters, which
may entail signi�cant additional engineering.

DeepRL has driven impressive recent advances for motion con-
trol, i.e., solving for continuous-action control problems using rein-
forcement learning. Deep networks have demonstrated promising
capacity to directly map high-dimensional state representations
to low-level actions such as torques. All four of the action types
that we explore have seen previous use in the machine learning
literature. WawrzyńSki and Tanwani [2013] use an actor-critic ap-
proach with experience replay to learn skills for an octopus arm
(actuated by a simple muscle model) and a planar half cheetah
(actuated by joint-based PD-controllers). Recent work on determin-
istic policy gradients [Lillicrap et al. 2015] and on RL benchmarks,
e.g., OpenAI Gym, generally use joint torques as the action space,

as do the test suites in recent work [Schulman et al. 2015] on us-
ing generalized advantage estimation. Other recent work uses: the
PR2 e�ort control interface as a proxy for torque control [Levine
et al. 2015]; joint velocities [Gu et al. 2016]; velocities under an
implicit control policy [Mordatch et al. 2015]; or provide abstract
actions [Hausknecht and Stone 2015]. Our learning procedures are
based on prior work using actor-critic approaches with positive
temporal di�erence updates [Van Hasselt 2012].

Work in biomechanics has long recognized the embodied nature
of the control problem and the view that musculotendon systems
provide “pre�exes” [Loeb 1995] that e�ectively provide a form intel-
ligence by mechanics [Blickhan et al. 2007; van Soest and Bobbert
1993], as well as allowing for energy storage. Control methods in
robotics use a mix of actuation types, including direct-drive torques
(or their virtualized equivalents), series elastic actuators, PD control,
and velocity control. These methods often rely heavily on model-
based solutions and thus we do not describe these in further detail
here.

3 BACKGROUND
Our task will be structured as a standard reinforcement learning
problem where an agent interacts with its environment accord-
ing to a policy in order to maximize a reward signal. The policy
π (s,a) = p(a |s) represents the conditional probability density func-
tion of selecting action a ∈ A in state s ∈ S . At each control step
t , the agent observes a state st and samples an action at from π .
The environment in turn responds with a scalar reward rt , and
a new state s ′t = st+1 sampled from its dynamics p(s ′ |s,a). For a
parameterized policy πθ (s,a), the goal of the agent is learn the
parameters θ which maximizes the expected cumulative reward

J (πθ ) = E
[ T∑
t=0

γ t rt

�����πθ
]

with γ ∈ [0, 1] as the discount factor, andT as the horizon. The gra-
dient of the expected reward Oθ J (πθ ) can be determined according
to the policy gradient theorem [Sutton et al. 2001], which provides
a direction of improvement to adjust the policy parameters θ .

Oθ J (πθ ) =
∫
S
dθ (s)

∫
A
Oθ log(πθ (s,a))A(s,a)da ds

wheredθ (s) =
∫
S
∑T
t=0 γ

tp0(s0)p(s0 → s |t ,πθ )ds0 is the discounted
state distribution, p0(s) represents the initial state distribution, and
p(s0 → s |t ,πθ )models the likelihood of reaching state s by starting
at s0 and following the policy πθ (s,a) forT steps [Silver et al. 2014].
A(s,a) represents a generalized advantage function. The choice
of advantage function gives rise to a family of policy gradient
algorithms, but in this work, we will focus on the one-step temporal
di�erence advantage function [Schulman et al. 2015]

A(st ,at ) = rt + γV (s ′t ) −V (st )

where V (s) = E
[∑T

t=0 γ
t rt

��s0 = s,πθ ] is the state-value function,
and can be de�ned recursively via the Bellman equation

V (st ) = E
rt ,s ′t

[
rt + γV (s ′t )

��st ,πθ ]
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A parameterized value functionVϕ (s), with parameters ϕ, can be
learned iteratively in a manner similar to Q-Learning by minimizing
the Bellman loss [Mnih et al. 2015],

L(ϕ) = E
st ,rt ,s ′t

[
1
2

(
yt −Vϕ (st )

)2]
, yt = rt + γVϕ (s ′t )

πθ andVϕ can be trained in tandem using an actor-critic framework
[Konda and Tsitsiklis 2000].

In this work, each policy will be represented as a Gaussian dis-
tribution with a parameterized mean µθ (s) and �xed covariance
matrix Σ = diag{σ 2i }, where σi is manually speci�ed for each ac-
tion parameter. Actions can be sampled from the distribution by
applying Gaussian noise to the mean action

at = µθ (st ) +N(0, Σ)
The corresponding policy gradient will assume the form

Oθ J (πθ ) =
∫
S
dθ (s)

∫
A
Oθ µθ (s)Σ−1 (a − µθ (s))A(s,a)da ds

which can be interpreted as shifting the mean of the action distri-
bution towards actions that lead to higher than expected rewards,
while moving away from actions that lead to lower than expected
rewards.

4 TASK REPRESENTATION
4.1 Reference Motion
In our task, the goal of a policy is to imitate a given reference
motion {q∗t } which consists of a sequence of kinematic poses q∗t
in reduced coordinates. The reference velocity Ûq∗t at a given time
t is approximated by �nite-di�erence Ûq∗t ≈

q∗t+4t−q∗t
4t . Reference

motions are generated via either using a recorded simulation result
from a preexisting controller (“Sim”), or via manually-authored
keyframes. Since hand-crafted reference motions may not be phys-
ically realizable, the goal is to closely reproduce a desired motion
while satisfying physical constraints.

4.2 States
To de�ne the state of the agent, a feature transformation Φ(q, Ûq)
is used to extract a set of features from the reduced-coordinate
pose q and velocity Ûq. The features consist of the height of the root
(pelvis) from the ground, the position of each link with respect to
the root, and the center of mass velocity of each link. When training
a policy to imitate a cyclic reference motion {q∗t }, knowledge of the
motion phase can help simplify learning. Therefore, we augment
the state features with a set of target features Φ(q∗t , Ûqt ∗), resulting in
a combined state represented by st = (Φ(qt , Ûqt ),Φ(q∗t , Ûqt ∗)). Similar
results can also be achieved by providing a single motion phase
variable as a state feature, as we show in Figure 19 (supplemental
material).

4.3 Actions
We train separate policies for each of the four actuation models, as
described below. Each actuation model also has related actuation
parameters, such as feedback gains for PD-controllers and muscu-
lotendon properties for MTUs. These parameters can be manually

speci�ed, as we do for the PD and Vel models, or they can be opti-
mized for the task at hand, as for the MTU models. Table 1 provides
a list of actuation parameters for each actuation model.

Target Joint Angles (PD):. Each action represents a set of target
angles q̂, where q̂i speci�es the target angles for joint i . q̂ is applied
to PD-controllers which compute torques according to

τ i = kip (q̂i − qi ) + kid ( Û̂q
i − Ûqi )

where Û̂qi = 0, and kip and kid are manually-speci�ed gains.

Target Joint Velocities (Vel): Each action speci�es a set of target
velocities Û̂q which are used to compute torques according to

τ i = kid ( Û̂q
i − Ûqi )

where the gains kid are speci�ed to be the same as those used for
target angles.

Torques (Tor): Each action directly speci�es torques for every
joint, and constant torques are applied for the duration of a con-
trol step. Due to torque limits, actions are bounded by manually
speci�ed limits for each joint. Unlike the other actuation models,
the torque model does not require additional actuation parame-
ters, and can thus be regarded as requiring the least amount of
domain knowledge. Torque limits are excluded from the actuation
parameter set as they are common for all parameterizations.

Muscle Activations (MTU):. Each action speci�es activations for
a set of musculotendon units (MTU). Detailed modeling and im-
plementation information are available in Wang et al. [2012]. Each
MTU is modeled as a contractile element (CE) attached to a serial
elastic element (SE) and parallel elastic element (PE). The force
exerted by the MTU can be calculated according to

FMTU = FSE = FCE + FPE

Both FSE and FPE are modeled as passive springs, while FCE is
actively controlled according to

FCE = aMTU F0 fl (lCE )fv (vCE )

with aMTU being the muscle activation, F0 the maximum isometric
force, lCE and vCE being the length and velocity of the contractile
element. The functions fl (lCE ) and fv (vCE ) represent the force-
length and force-velocity relationships, modeling the variations in
the maximum force that can be exerted by a muscle as a function
of its length and contraction velocity. Analytic forms are available
in Geyer et al. [2003]. Activations are bounded between [0, 1].
The length of each contractile element lCE are included as state
features. To simplify control and reduce the number of internal
state parameters per MTU, the policies directly control muscle
activations instead of indirectly through excitations [Wang et al.
2012].

4.4 Reward
The reward function consists of a weighted sum of terms that
encourage the policy to track a reference motion.

r = wposerpose +wvel rvel +wendrend +wroot rroot +wcomrcom

wpose = 0.5, wvel = 0.05, wend = 0.15, wroot = 0.1, wcom = 0.2
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Actuation Model Actuation Parameters
Target Joint Angles

(PD)
proportional gains kp ,

derivative gains kd
Target Joint Velocities

(Vel) derivative gains kd

Torques
(Tor) none

Muscle Activations
(MTU)

optimal contractile element length,
serial elastic element rest length,

max isometric force,
pennation, moment arm,

max moment arm orientation,
rest joint orientation

Table 1: Actuation models and their respective actuation pa-
rameters.

Details of each term are available in the supplemental material.
rpose penalizes deviation of the character pose from the reference
pose, and rvel penalizes deviation of the joint velocities. rend and
rroot accounts for the position error of the end-e�ectors and root.
rcom penalizes deviations in the center of mass velocity from that
of the reference motion.

4.5 Initial State Distribution
We design the initial state distribution, p0(s), to sample states uni-
formly along the reference trajectory. At the start of each episode,
q∗ and Ûq∗ are sampled from the reference trajectory, and used to
initialize the pose and velocity of the agent. This helps guide the
agent to explore states near the target trajectory. Figure 2 illustrates
a comparison between �xed and sampled initial state distributions.

5 ACTOR-CRITIC LEARNING ALGORITHM
Instead of directly using the temporal di�erence advantage function,
we adapt a positive temporal di�erence (PTD) update as proposed
by Van Hasselt [2012].

A(s,a) = I [δ > 0] =
{
1, δ > 0
0, otherwise

δ = r + γV (s ′) −V (s)
Unlike more conventional policy gradient methods, PTD is less sen-
sitive to the scale of the advantage function and avoids instabilities
that can result from negative TD updates. For a Gaussian policy,
a negative TD update moves the mean of the distribution away
from an observed action, e�ectively shifting the mean towards an
unknown action that may be no better than the current mean ac-
tion [Van Hasselt 2012]. In expectation, these updates converges to
the true policy gradient, but for stochastic estimates of the policy
gradient, these updates can cause the agent to adopt undesirable
behaviours which a�ect subsequent experiences collected by the
agent. Furthermore, we incorporate experience replay, which has
been demonstrated to improve stability when training neural net-
work policies with Q-learning in discrete action spaces [Mnih et al.
2015]. Experience replay often requires o�-policy methods, such
as importance weighting, to account for di�erences between the

policy being trained and the behavior policy used to generate expe-
riences [WawrzyńSki and Tanwani 2013]. However, we have not
found importance weighting to be bene�cial for PTD.

Stochastic policies are used during training for exploration, while
deterministic policies are used for evaluation at runtime. The choice
between a stochastic and deterministic policy can be speci�ed by
the addition of a binary indicator variable λ ∈ [0, 1]

at = µθ (st ) + λN(0, Σ)
where λ = 1 corresponds to a stochastic policy with exploration
noise, and λ = 0 corresponds to a deterministic policy that always
selects the mean of the distribution. Noise from a stochastic pol-
icy will result in a state distribution that di�ers from that of the
deterministic policy at runtime. To mitigate this discrepancy, we
incorporate ϵ-greedy exploration to the original Gaussian explo-
ration strategy. During training, λ is determined by a Bernoulli
random variable λ ∼ Ber(ϵ), where λ = 1 with probability ϵ ∈ [0, 1].
The exploration rate ϵ is annealed linearly from 1 to 0.2 over 500k
iterations, which slowly adjusts the state distribution encountered
during training to better resemble the distribution at runtime. Since
the policy gradient is de�ned for stochastic policies, only tuples
recorded with exploration noise (i.e. λ = 1) can be used to update
the actor, while the critic can be updated using all tuples.

Training proceeds episodically, where the initial state of each
episode is sampled from p0(s), and the episode duration is drawn
from an exponential distribution with a mean of 2s. To discourage
falling, an episode will also terminate if any part of the character’s
trunk makes contact with the ground for an extended period of
time, leaving the agent with zero reward for all subsequent steps.
Algorithm 1 summarizes the complete learning process.

MTU Actuator Optimization: Actuation models such as MTUs
are de�ned by further parameters whose values impact perfor-
mance [Geijtenbeek et al. 2013]. Geyer et al. [2003] uses existing
anatomical estimates for humans to determine MTU parameters,
but such data may not be readily available for more arbitrary crea-
tures. Alternatively, Geijtenbeek et al. [2013] uses covariance matrix
adaptation (CMA), a derivative-free evolutionary search strategy,
to simultaneously optimize MTU and policy parameters. This ap-
proach is limited to policies with reasonably low dimensional pa-
rameter spaces, and is thus ill-suited for neural network models

Figure 2: Left: �xed initial state biases agent to regions of
the state space near the initial state, particular during early
iterations of training. Right: initial states sampled from ref-
erence trajectory allows agent to explore state space more
uniformly around the reference trajectory.
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Figure 3: Simulated articulated �gures and their state rep-
resentation. Revolute joints connect all links. left-to-right:
7-link biped; 19-link raptor; 21-link dog.

Figure 4: State features: root height, relative position (red) of
each link with respect to the root and their respective linear
velocity (green).

with hundreds of thousands of parameters. To avoid manual-tuning
of actuation parameters, we propose a heuristic approach that al-
ternates between policy learning and actuator optimization.

The actuation parametersψ can be interpreted as a parameter-
ization of the dynamics of the system p(s ′ |s,a,ψ ). The expected
cumulative reward can then be re-parameterized according to

J (πθ ,ψ ) =
∫
S
dθ (s |ψ )

∫
A
πθ (s,a)A(s,a)da ds

where dθ (s |ψ ) =
∫
S
∑T
t=0 γ

tp0(s0)p(s0 → s |t ,πθ ,ψ )ds0. θ and ψ
are then learned in an alternating fashion as per Algorithm 2. This
alternating method optimizes both the control and dynamics in
order to maximize the expected value of the agent, as analogous
to the role of evolution in biomechanics. During each pass, the
policy parameters θ are trained to improve the agent’s expected
value for a �xed set of actuation parametersψ . Next,ψ is optimized
using CMA to improve performance while keeping θ �xed. The
expected value of each CMA sample of ψ is estimated using the
average undiscounted cumulative reward over multiple rollouts.

6 RESULTS
The motions are best seen in the supplemental video. We evaluate
the action parameterizations by training policies for a simulated
2D biped, dog, and raptor as shown in Figure 3. Depending on the
agent and the actuation model, our systems have 58–214 state di-
mensions, 6–44 action dimensions, and 0–282 actuation parameters,
as summarized in Table 3 (supplemental materials). The MTU mod-
els have at least double the number of action parameters because
they come in antagonistic pairs. As well, additional MTUs are used
for the legs to more accurately re�ect bipedal biomechanics. This
includes MTUs that span multiple joints.

Algorithm 1 Actor-critic Learning Using Positive Temporal Dif-
ferences

1: θ ← random weights
2: ϕ ← random weights

3: while not done do
4: for step = 1, ...,m do
5: s ← start state
6: λ← Ber(ϵt )
7: a ← µθ (s) + λN(0, Σ)
8: Apply a and simulate forward 1 step
9: s ′ ← end state

10: r ← reward
11: τ ← (s,a, r , s ′, λ)
12: store τ in replay memory

13: if episode terminated then
14: Sample s0 from p0(s)
15: Reinitialize state s to s0
16: end if
17: end for

18: Update critic:
19: Sample minibatch of n tuples {τi = (si ,ai , ri , λi , s ′i )} from

replay memory
20: for each τi do
21: δi ← ri + γVϕ (s ′i ) −Vϕ (si )
22: ϕ ← ϕ + αV

1
n δiOϕVϕ (si )

23: end for

24: Update actor:
25: Sample minibatch of n tuples {τj = (sj ,aj , r j , λj , s ′j )} from

replay memory where λj = 1
26: for each τj do
27: δj ← r j + γVϕ (s ′j ) −Vϕ (sj )
28: if δj > 0 then
29: Oaj ← aj − µθ (sj )
30: Oãj ← BoundActionGradient(Oaj , µθ (sj ))
31: θ ← θ + απ

1
nOθ µθ (sj )Σ−1Oãj

32: end if
33: end for
34: end while

Algorithm 2 Alternating Actuator Optimization
1: θ ← θ0
2: ψ ← ψ0
3: while not done do
4: θ ← argmaxθ ′ J (πθ ′ ,ψ ) with Algorithm 1
5: ψ ← argmaxψ ′ J (πθ ,ψ ′) with CMA
6: end while

Each policy is represented by a three layer neural network, as
illustrated in Figure 5 with 512 and 256 fully-connected units, fol-
lowed by a linear output layer where the number of output units
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Figure 5: Neural network architecture. Each policy is repre-
sented by a three layered network, with 512 and 256 fully-
connected hidden units, followed by a linear output layer.

vary according to the number of action parameters for each char-
acter and actuation model. ReLU activation functions are used for
both hidden layers. Each network has approximately 200k parame-
ters. The value function is represented by a similar network, except
having a single linear output unit. The policies are queried at 60Hz
for a control step of about 0.0167s. Each network is randomly initial-
ized and trained for about 1 million iterations, requiring 32 million
tuples, the equivalent of approximately 6 days of simulated time.
Each policy requires about 10 hours for the biped, and 20 hours for
the raptor and dog on an 8-core Intel Xeon E5-2687W.

Only the actuation parameters for MTUs are optimized with
Algorithm 2, since the parameters for the other actuation models
are few and reasonably intuitive to determine. The initial actuation
parametersψ0 are manually speci�ed, while the initial policy pa-
rameters θ0 are randomly initialized. Each pass optimizesψ using
CMA for 250 generations with 16 samples per generation, and θ is
trained for 250k iterations. Parameters are initialized with values
from the previous pass. The expected value of each CMA sample
of ψ is estimated using the average cumulative reward over 16
rollouts with a duration of 10s each. Separate MTU parameters
are optimized for each character and motion. Each set of param-
eters is optimized for 6 passes following Algorithm 2, requiring
approximately 50 hours. Figure 9 illustrates the performance im-
provement per pass. Figure 10 compares the performance of MTUs
before and after optimization. For most examples, the optimized
actuation parameters signi�cantly improve learning speed and �nal
performance. For the sake of comparison, after a set of actuation
parameters has been optimized, a new policy is retrained with the
new set of actuation parameters and its performance compared to
the other actuation models.

Policy Performance and Learning Speed: Figure 6 shows learning
curves for the policies and the performance of the �nal policies
are summarized in Table 4 (supplemental material). Performance is
evaluated using the normalized cumulative reward (NCR), calcu-
lated from the average cumulative reward over 32 episodes with
lengths of 10s, and normalized by the maximum and minimum
cumulative reward possible for each episode. No discounting is ap-
plied when calculating the NCR. The initial state of each episode is
sampled from the reference motion according to p(s0). To compare
learning speeds, we use the normalized area under each learning

Figure 6: Learning curves for each policy during 1 million
iterations.

curve (AUC) as a proxy for the learning speed of a particular actu-
ation model, where 0 represents the worst possible performance
and no progress during training, and 1 represents the best possible
performance without requiring training.

PD performs well across all examples, achieving comparable-to-
the-best performance for all motions. PD also learns faster than the
other parameterizations for 5 of the 7 motions. The �nal perfor-
mance of Tor is among the poorest for all the motions. Di�erences
in performance appear more pronounced as characters become
more complex. For the simple 7-link biped, most parameterizations
achieve similar performance. However, for the more complex dog
and raptor, the performance of Tor policies deteriorate with respect
to other policies such as PD and Vel. MTU policies often exhib-
ited the slowest learning speed, which may be a consequence of
the higher dimensional action spaces, i.e., requiring antagonistic
muscle pairs, and complex muscle dynamics. Nonetheless, once
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Figure 7: Simulated motions. The biped uses an MTU action
space while the dog and raptor are driven by a PD action
space.

Figure 8: Performance of policies with di�erent query rates
for the biped (left) and dog (right). Separate policies are
trained for each query rate.

optimized, the MTU policies produce more natural motions and
responsive behaviors as compared to other parameterizations. We
note that the naturalness of motions is not well captured by the
reward, since it primarily gauges similarity to the reference mo-
tion, which may not be representative of natural responses when
perturbed from the nominal trajectory. A sensitivity analysis of
the policies’ performance to variations in network architecture and
hyperparameters is available in the supplemental material.

MTU Actuator Optimization: Figure 9 illustrates the improve-
ment in performance during the MTU actuator optimization pro-
cess, as applied to motions for three di�erent agents. Figure 10

Figure 9: Performance of intermediate MTU policies and ac-
tuation parameters per pass of actuator optimization follow-
ing Algorithm 2.

Figure 10: Learning curves comparing initial and optimized
MTU parameters.

compares the learning curves for the initial and �nal MTU pa-
rameters, for the same three motions. The policies trained with
the optimized MTU parameters learn signi�cantly faster than the
initial parameter set and also achieve better �nal performance.

Policy Robustness: To evaluate robustness, we record the NCR
achieved by each policy when subjected to external perturbations.
The perturbations assume the form of random forces applied to the
trunk of the characters. Figure 11 illustrates the performance of the
policies when subjected to perturbations of di�erent magnitudes.
The magnitude of the forces are constant, but the direction varies
randomly. Each force is applied for 0.1 to 0.4s, with 1 to 4s between
each perturbation. Performance is estimated using the average over
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Figure 11: Performance when subjected to random perturba-
tion forces of di�erent magnitudes.

128 episodes of length 20s each. For the biped walk, the Tor policy
is signi�cantly less robust than those for the other types of actions,
while the MTU policy is the least robust for the raptor run. Overall,
the PD policies are among the most robust for all the motions. In
addition to external forces, we also evaluate the robustness when
locomoting over randomly generated terrain consisting of bumps
with varying heights and slopes with varying steepness. We eval-
uate the performance on irregular terrain (Figure 12). There are a
few consistent patterns for this test. The Vel and MTU policies are
signi�cantly worse than the Tor and PD policies for the dog bound
on the bumpy terrain. The unnatural jittery behavior of the dog
Tor policy proves to be surprisingly robust for this scenario. We
suspect that the behavior prevents the trunk from contacting the
ground for extended periods for time, and thereby escaping our
system’s fall detection.

Query Rate: Figure 8 compares the performance of di�erent pa-
rameterizations for di�erent policy query rates. Separate policies
are trained with queries of 15Hz, 30Hz, 60Hz, and 120Hz. Actuation
models that incorporate low-level feedback such as PD and Vel,
appear to cope more e�ectively to lower query rates, while the Tor
degrades more rapidly at lower query rates. It is not yet obvious to
us why MTU policies appear to perform better at lower query rates
and worse at higher rates. Lastly, Figure 18 (supplemental material)
shows the policy outputs as a function of time for the four actuation
models, for a particular joint, as well as showing the resulting joint
torque. Interestingly, the MTU action is visibly smoother than the
other actions and results in joint torques pro�les that are smoother
than those seen for PD and Vel.

Additional Experiments: We present a number of additional ex-
periments in the supplemental material. These include an analysis
of the sensitivity learning results with respect to di�erent random
intializations, di�erent choices of PD gains, di�erent amounts of
exploration noise, and reference motions that were originally syn-
thesized via alternative means, e.g., MTU-based simulations.

Figure 12: Performance of action parameterizations when
traveling across randomly generated irregular terrain. (top)
Dog and biped traveling across randomly generated slopes
with bounded maximum steepness. (bottom) Dog running
across bumpy terrain, where the height of each bump varies
uniformly between 0 and a speci�ed maximum height.

7 CONCLUSIONS
Our experiments suggest that action parameterizations that include
basic local feedback, such as PD target angles, MTU activations,
or target velocities, can improve policy performance and learning
speed across di�erent motions and character morphologies. Such
models more accurately re�ect the embodied nature of control in
biomechanical systems, and the role of mechanical components
in shaping the overall dynamics of motions and their control. The
di�erence between low-level and high-level action parameteriza-
tions grow with the complexity of the characters, with high-level
parameterizations scaling more gracefully to complex characters.
As a caveat, there may well be tasks, such as impedance control,
where lower-level action parameterizations such as Tor may prove
advantageous. We believe that no single action parameterization
will be the best for all problems. However, since objectives for
motion control problems are often naturally expressed in terms
of kinematic properties, higher-level actions such as target joint
angles and velocities may be e�ective for a wide variety of motion
control problems. We hope that our work will help open discussions
around the choice of action parameterizations.

Our results have only been demonstrated on planar articulated
�gure simulations; the extension to 3D currently remains as fu-
ture work. Furthermore, our current torque limits are still large as
compared to what might be physically realizable. Tuning actuation
parameters for complex actuation models such as MTUs remains
challenging. Though our actuator optimization technique is able to
improve performance as compared to manual tuning, the resulting
parameters may still not be optimal for the desired task. Therefore,
our comparisons of MTUs to other action parameterizations may
not be re�ective of the full potential of MTUs with more optimal
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actuation parameters. Furthermore, our actuator optimization cur-
rently tunes parameters for a speci�c motion, rather than a larger
suite of motions, as might be expected in nature.

Since the reward terms are mainly expressed in terms of joint
positions and velocities, it may seem that it is inherently biased in
favour of PD and Vel. However, the real challenges for the control
policies lie elsewhere, such as learning to compensate for gravity
and ground-reaction forces, and learning foot-placement strategies
that are needed to maintain balance for the locomotion gaits. The
reference pose terms provide little information on how to achieve
these hidden aspects of motion control that will ultimately deter-
mine the success of the locomotion policy. While we have yet to
provide a concrete answer for the generalization of our results to
di�erent reward functions, we believe that the choice of action pa-
rameterization is a design decision that deserves greater attention
regardless of the choice of reward function.

Finally, it is reasonable to expect that evolutionary processes
would result in the e�ective co-design of actuation mechanics and
control capabilities. Developing optimization and learning algo-
rithms to allow for this kind of co-design is a fascinating possibility
for future work.
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SUPPLEMENTARY MATERIAL
Bounded Action Space

Properties such as torque and neural activation limits result in
bounds on the range of values that can be assumed by actions
for a particular parameterization. Improper enforcement of these
bounds can lead to unstable learning as the gradient information
outside the bounds may not be reliable [Hausknecht and Stone
2015]. To ensure that all actions respect their bounds, we adopt a
method similar to the inverting gradients approach proposed by
Hausknecht and Stone [2015]. Let Oa = (a − µ(s))A(s,a) be the
empirical action gradient from the policy gradient estimate of a
Gaussian policy. Given the lower and upper bounds [l i ,ui ] of the ith
action parameter, the bounded gradient of the ith action parameter
Oãi is determined according to

Oãi =


l i − µi (s), µi (s) < l i and Oai < 0
ui − µi (s), µi (s) > ui and Oai > 0
Oai , otherwise

Unlike the inverting gradients approach, which scales all gradients
depending on proximity to the bounds, this method preserves the
empirical gradients when bounds are respected, and alters the gra-
dients only when bounds are violated.

Reward
The terms of the reward function are de�ned as follows:

rpose = exp
(
−||q∗ − q | |2W

)
rvel = exp

(
−|| Ûq∗ − Ûq | |2W

)
rend = exp

(
−40

∑
e
| |x∗e − xe | |2

)
rroot = exp

(
−10(h∗root − hroot )2

)
rcom = exp

(
−10| | Ûx∗com − Ûxcom | |2

)
q and q∗ denotes the character pose and reference pose represented
in reduced-coordinates, while Ûq and Ûq∗ are the respective joints
velocities.W is a manually-speci�ed per joint diagonal weighting
matrix. hroot is the height of the root from the ground, and Ûxcom
is the center of mass velocity.

Sensitivity Analysis
We further analyze the sensitivity of the results to di�erent

initializations and design decisions. Figure 13 compares the learn-
ing curves from multiple policies trained using di�erent random
initializations of the networks. Four policies are trained for each
actuation model. The results for a particular actuation model are
similar across di�erent runs, and the trends between the various
actuation models also appear to be consistent. To evaluate the sen-
sitivity to the amount of exploration noise applied during training,
we trained policies where the standard deviation of the action dis-
tribution is twice and half of the default values. Figure 14 illustrates
the learning curves for each policy. Overall, the performance of

the policies do not appear to change signi�cantly for the particu-
lar range of values. Finally, Figure 15 compares the results using
di�erent network architectures. The network variations include
doubling the number of units in both hidden layers, halving the
number of hidden units, and inserting an additional layer with 512
units between the two existing hidden layers. The choice of net-
work structure does not appear to have a noticeable impact on the
results, and the di�erences between the actuation models appear
to be consistent across the di�erent networks.

Figure 13: Learning curves from di�erent random network
initializations. Four policies are trained for each actuation
model.

Figure 14: Learning curves comparing the e�ects of scaling
the standard deviation of the action distribution by 1x, 2x,
and 1/2x.

Figure 15: Learning curves for di�erent network architec-
tures. The network structures include, doubling the number
of units in each hidden layer, halving the number of units,
and inserting an additional hidden layer with 512 units be-
tween the two existing hidden layers.
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While the MTU actuation parameters were optimized via auto-
mated actuator optimization, the actuation parameters for the other
models, e.g. PD gains, were manually speci�ed. To analyze the poli-
cies’ sensitivity to the manually speci�ed parameters, we trained
PD policies with gains scaled by 0.25, 0.5, 1, and 2. Figure 16 shows
the learning curves using the di�erent sets of actuation parameters.
The behaviour of the policies appears robust to changes within a
factor of 2. Reducing the gains to 0.25 of their default values exhibits
some negative impact to performance.

Figure 16: Learning curves for PD policies with di�erent
scalings of the PD gains.

To further evaluate the actuation models’ performance with
respect to di�erent reference motions, we recorded a reference
motion of the MTU policy for Dog : Bound (Sim), and retrained
new policies to imitate the motion. Learnings curves are available
in Figure 17. The performance of the various policies appear to
respect the trends observed with other reference motions. Though
the reference motion was recorded from an MTU policy, the PD
policy still learns more quickly than the MTU policy.

Figure 17: Learning curves for policies trained to imitate a
reference motion recorded from an MTU policy.

Figure 18: Policy actions over time and the resulting torques
for the four action types. Data is from one biped walk cycle
(1s). Left: Actions (60 Hz), for the right hip for PD, Vel, and
Tor, and the right gluteal muscle for MTU. Right: Torques
applied to the right hip joint, sampled at 600 Hz.

Figure 19: Learning curves for di�erent state representa-
tions including state + target state, state + phase, and only
state.
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Parameter Value Description
γ 0.9 cumulative reward discount factor
απ 0.001 actor learning rate
αV 0.01 critic learning rate

momentum 0.9 stochastic gradient descent momentum
ϕ weight decay 0 L2 regularizer for critic parameters
θ weight decay 0.0005 L2 regularizer for actor parameters
minibatch size 32 tuples per stochastic gradient descent step

replay memory size 500000 number of the most recent tuples stored for future updates

Table 2: Training hyperparameters.

Character + Actuation Model State Parameters Action Parameters Actuation Parameters
Biped + Tor 58 6 0
Biped + Vel 58 6 6
Biped + PD 58 6 12

Biped + MTU 74 16 114
Raptor + Tor 154 18 0
Raptor + Vel 154 18 18
Raptor + PD 154 18 36

Raptor + MTU 194 40 258
Dog + Tor 170 20 0
Dog + Vel 170 20 20
Dog + PD 170 20 40

Dog + MTU 214 44 282

Table 3: The number of state, action, and actuation model parameters for di�erent characters and actuation models.
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Character + Actuation Motion Performance (NCR) Learning Speed (AUC)
Biped + Tor Walk 0.7662 ± 0.3117 0.4788
Biped + Vel Walk 0.9520 ± 0.0034 0.6308
Biped + PD Walk 0.9524 ± 0.0034 0.6997

Biped + MTU Walk 0.9584 ± 0.0065 0.7165
Biped + Tor March 0.9353 ± 0.0072 0.7478
Biped + Vel March 0.9784 ± 0.0018 0.9035
Biped + PD March 0.9767 ± 0.0068 0.9136

Biped + MTU March 0.9484 ± 0.0021 0.5587
Biped + Tor Run 0.9032 ± 0.0102 0.6938
Biped + Vel Run 0.9070 ± 0.0106 0.7301
Biped + PD Run 0.9057 ± 0.0056 0.7880

Biped + MTU Run 0.8988 ± 0.0094 0.5360
Raptor + Tor Run (Sim) 0.7265 ± 0.0037 0.5061
Raptor + Vel Run (Sim) 0.9612 ± 0.0055 0.8118
Raptor + PD Run (Sim) 0.9863 ± 0.0017 0.9282

Raptor + MTU Run (Sim) 0.9708 ± 0.0023 0.6330
Raptor + Tor Run 0.6141 ± 0.0091 0.3814
Raptor + Vel Run 0.8732 ± 0.0037 0.7008
Raptor + PD Run 0.9548 ± 0.0010 0.8372

Raptor + MTU Run 0.9533 ± 0.0015 0.7258
Dog + Tor Bound (Sim) 0.7888 ± 0.0046 0.4895
Dog + Vel Bound (Sim) 0.9788 ± 0.0044 0.7862
Dog + PD Bound (Sim) 0.9797 ± 0.0012 0.9280

Dog + MTU Bound (Sim) 0.9033 ± 0.0029 0.6825
Dog + Tor Rear-Up 0.8151 ± 0.0113 0.5550
Dog + Vel Rear-Up 0.7364 ± 0.2707 0.7454
Dog + PD Rear-Up 0.9565 ± 0.0058 0.8701

Dog + MTU Rear-Up 0.8744 ± 0.2566 0.7932

Table 4: Performance of policies trained for the various characters and actuation models. Performance is measured using the
normalized cumulative reward (NCR) and learning speed is represented by the normalized area under each learning curve
(AUC). The best performing parameterizations for each character and motion are in bold.
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