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ABSTRACT

In this paper, we aim to develop a simple and scalable reinforcement learning al-
gorithm that uses standard supervised learning methods as subroutines. Our goal
is an algorithm that utilizes only simple and convergent maximum likelihood loss
functions, while also being able to leverage off-policy data. Our proposed ap-
proach, which we refer to as advantage-weighted regression (AWR), consists of
two standard supervised learning steps: one to regress onto target values for a
value function, and another to regress onto weighted target actions for the policy.
The method is simple and general, can accommodate continuous and discrete ac-
tions, and can be implemented in just a few lines of code on top of standard super-
vised learning methods. We provide a theoretical motivation for AWR and analyze
its properties when incorporating off-policy data from experience replay. We eval-
uate AWR on a suite of standard OpenAI Gym benchmark tasks, and show that
it achieves competitive performance compared to a number of well-established
state-of-the-art RL algorithms. AWR is also able to acquire more effective poli-
cies than most off-policy algorithms when learning from purely static datasets
with no additional environmental interactions. Furthermore, we demonstrate our
algorithm on challenging continuous control tasks with highly complex simulated
characters. (Video1)

1 INTRODUCTION

Model-free reinforcement learning can be a general and effective methodology for training agents
to acquire sophisticated behaviors with minimal assumptions on the underlying task (Mnih et al.,
2015; Heess et al., 2017; Pathak et al., 2017). However, reinforcement learning algorithms can
be substantially more complex to implement and tune than standard supervised learning methods.
Arguably the simplest reinforcement learning methods are policy gradient algorithms (Sutton et al.,
2000), which directly differentiate the expected return and perform gradient ascent. Unfortunately,
these methods can be notoriously unstable and are typically on-policy (or nearly on-policy), often
requiring a substantial number of samples to learn effective behaviors. Our goal is to develop a
reinforcement learning algorithm that is simple, easy to implement, and can readily incorporate
off-policy experience data.

In this work, we propose advantage-weighted regression (AWR), a simple off-policy algorithm for
model-free RL. Each iteration of the AWR algorithm simply consists of two supervised regression
steps: one for training a value function baseline via regression onto cumulative rewards, and another

Figure 1: Complex simulated character trained using advantage-weighted regression. Left: Hu-
manoid performing a spinkick. Right: Dog performing a canter.

1Supplementary video: xbpeng.github.io/projects/AWR/
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for training the policy via weighted regression. The complete algorithm is shown in Algorithm 1.
AWR can accommodate continuous and discrete actions, and can be implemented in just a few
lines of code on top of standard supervised learning methods. Despite its simplicity, we find that
AWR achieves competitive results when compared to commonly used on-policy and off-policy RL
algorithms, and can effectively incorporate fully off-policy data, which has been a challenge for other
RL algorithms. Our derivation of AWR presents an interpretation of our method as a constrained
policy optimization procedure, and provides a theoretical analysis of the use of off-policy data with
experience replay.

We first revisit the original formulation of reward-weighted regression, an on-policy RL method
that utilizes supervised learning to perform policy updates, and then propose a number of new de-
sign decisions that significantly improve performance on a suite of standard continuous control
benchmark tasks. We then provide a theoretical analysis of AWR, including the capability to in-
corporate off-policy data with experience replay. Although the design of AWR involves only a few
simple design decisions, we show experimentally that these additions provide for a large improve-
ment over previous methods for regression-based policy search, such as reward-weighted regression
(RWR) (Peters & Schaal, 2007), while also being substantially simpler than more modern methods,
such as MPO (Abdolmaleki et al., 2018). We show that AWR achieves competitive performance
when compared to several well-established state-of-the-art on-policy and off-policy algorithms. We
further demonstrate our algorithm on challenging control tasks with complex simulated characters.

2 PRELIMINARIES

In reinforcement learning, the objective is to learn a control policy that enables an agent to maxi-
mize its expected return for a given task. At each time step t, the agent observes the state of the
environment st ∈ S , and samples an action at ∈ A from a policy at ∼ π(at|st). The agent then
applies that action, which results in a new state st+1 and a scalar reward rt = r(st,at). The goal is
to learn an optimal policy that maximizes the agent’s expected discounted return J(π),

J(π) = Eτ∼pπ(τ)

[ ∞∑
t=0

γtrt

]
= Es∼dπ(s)Ea∼π(a|s) [r(s,a)] , (1)

where pπ(τ) represents the likelihood of a trajectory τ = {(s0,a0, r0) , (s1,a1, r1) , ...} under a pol-
icy π, and γ ∈ [0, 1) is the discount factor. dπ(s) =

∑∞
t=0 γ

tp(st = s|π) represents the unnormal-
ized discounted state distribution induced by the policy π (Sutton & Barto, 1998), and p(st = s|π)
is the likelihood of the agent being in state s after following π for t timesteps.

Our proposed AWR algorithm builds on ideas from reward-weighted regression (RWR) (Peters et al.,
2010), a policy search algorithm based on an expectation-maximization framework, which solves
the following supervised regression problem at each iteration:

πk+1 = arg max
π

Es∼dπk (s)Ea∼πk(a|s)

[
log π(a|s) exp

(
1

β
Rs,a

)]
. (2)

πk represents the policy at the kth iteration of the algorithm, and Rs,a =
∑∞
t=0 γ

trt is the return.
The RWR update can be interpreted as solving a maximum likelihood problem that fits a new pol-
icy πk+1 to samples collected under the current policy πk, where the likelihood of each action is
weighted by the exponentiated return received for that action, with a temperature parameter β > 0.
As an alternative to the EM framework, a similar algorithm can also be derived using the dual for-
mulation of a constrained policy search problem (Peters et al., 2010).

3 ADVANTAGE-WEIGHTED REGRESSION

In this work, we propose advantage-weighted regression (AWR), a simple off-policy RL algorithm
based on reward-weighted regression. We first provide an overview of the complete advantage-
weighted regression algorithm, and then describe its theoretical motivation and analyze its proper-
ties. The complete AWR algorithm is summarized in Algorithm 1. Each iteration k of AWR consists
of the following simple steps. First, the current policy πk(a|s) is used to sample a batch of trajecto-
ries {τi} that are then stored in the replay buffer D, which is structured as a first-in first-out (FIFO)
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Algorithm 1 Advantage-Weighted Regression

1: π1 ← random policy
2: D ← ∅
3: for iteration k = 1, ..., kmax do
4: add trajectories {τi} sampled via πk to D
5: V Dk ← arg minV Es,a∼D

[∣∣∣∣RDs,a − V (s)
∣∣∣∣2]

6: πk+1 ← arg maxπ Es,a∼D

[
log π(a|s) exp

(
1
β

(
RDs,a − V Dk (s)

))]
7: end for

queue, as is common for off-policy reinforcement learning algorithms (Mnih et al., 2015; Lillicrap
et al., 2016). Then, the entire buffer D is used to fit a value function V Dk (s) to the trajectories in
the replay buffer, which can be done with simple Monte Carlo return estimates RDs,a =

∑T
t=0 γ

trt.
Finally, the same buffer is used to fit a new policy using advantage-weighted regression, where each
state-action pair in the buffer is weighted according to the exponentiated advantage exp( 1

βA
D(s,a)),

with the advantage given by AD(s,a) = RDs,a − V D(s) and β is a hyperparameter. AWR uses only
supervised regression as learning subroutines, making the algorithm very simple to implement. In
the following subsections, we first motivate the algorithm as an approximation to a constrained pol-
icy search problem, and then extend our analysis to incorporate experience replay.

3.1 DERIVATION

In this section, we derive the AWR algorithm as an approximate optimization of a constrained
policy search problem. Our goal is to find a policy that maximizes the expected improvement
η(π) = J(π)− J(µ) over a sampling policy µ(a|s). We first derive AWR for the setting where
the sampling policy is a single Markovian policy. Then, in the next section, we extend our result
to the setting where the data is collected from multiple policies, as in the case of experience replay
that we use in practice. The expected improvement η(π) can be expressed in terms of the advan-
tage Aµ(s,a) = Rµs,a − V µ(s) with respect to the sampling policy µ (Kakade & Langford, 2002;
Schulman et al., 2015):

η(π) = Es∼dπ(s)Ea∼π(a|s) [Aµ(s,a)] = Es∼dπ(s)Ea∼π(a|s)
[
Rµs,a − V µ(s)

]
, (3)

where Rµs,a denotes the return obtained by performing action a in state s and following µ for the
following timesteps, and V µ(s) =

∫
a
µ(a|s)Ra

s da corresponds to the value function of µ. This
objective differs from the ones used in the derivations of related algorithms, such as RWR and
REPS (Peters & Schaal, 2007; Peters et al., 2010; Abdolmaleki et al., 2018), which maximize the
expected return J(π) instead of the expected improvement. The expected improvement directly
gives rise to an objective that involves the advantage. We will see later that this yields weights for
the policy update that differ in a subtle but important way from standard reward-weighted regression.
As we show in our experiments, this difference results in a large empirical improvement.

The objective in Equation 3 can be difficult to optimize due to the dependency between dπ(s) and
π, as well as the need to collect samples from π. Following Schulman et al. (2015), we can instead
optimize an approximation η̂(π) of η(π) using the state distribution of µ:

η̂(π) = Es∼dµ(s)Ea∼π(a|s)
[
Rµs,a − V µ(s)

]
. (4)

Here, η̂(π) matches η(π) to first order (Kakade & Langford, 2002), and provides a good estimate of
η if π and µ are close in terms of the KL-divergence (Schulman et al., 2015). Using this objective,
we can formulate the following constrained policy search problem:

arg max
π

∫
s

dµ(s)

∫
a

π(a|s)
[
Rµs,a − V µ(s)

]
da ds (5)

s.t.
∫
s

dµ(s)DKL (π(·|s)||µ(·|s)) ds ≤ ε. (6)

The constraint in Equation 6 ensures that the new policy π is close to the data distribution of µ, and
therefore the surrogate objective η̂(π) remains a reasonable approximation to η(π). We refer the
reader to Schulman et al. (2015) for a detailed derivation and an error bound.
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We can derive AWR as an approximate solution to this constrained optimization. This derivation
follows a similar procedure as Peters et al. (2010), and begins by forming the Langrangian of the
constrained optimization problem presented above,

L(π, β) =

∫
s

dµ(s)

∫
a

π(a|s)
[
Rµs,a − V µ(s)

]
da ds + β

(
ε−

∫
s

dµ(s)DKL (π(·|s)||µ(·|s)) ds
)
,

(7)
where β is a Lagrange multiplier. Differentiating L(π, β) with respect to π(a|s) and solving for the
optimal policy π∗ results in the following expression for the optimal policy

π∗(a|s) =
1

Z(s)
µ(a|s) exp

(
1

β

(
Rµs,a − V µ(s)

))
, (8)

with Z(s) being the partition function. A detailed derivation is available in Appendix A. If π is
represented by a function approximator (e.g., a neural network), a new policy can be obtained by
projecting π∗ onto the manifold of parameterized policies,

arg min
π

Es∼D [DKL (π∗(·|s)||π(·|s))] (9)

= arg max
π

Es∼dµ(s)Ea∼µ(a|s)

[
log π(a|s) exp

(
1

β

(
Rµs,a − V µ(s)

))]
. (10)

While this derivation for AWR largely follows the derivations used in prior work (Peters et al.,
2010; Abdolmaleki et al., 2018), our expected improvement objective introduces a baseline V µ(s)
to the policy update, which as we show in our experiments, is a crucial component for an effective
algorithm. We next extend AWR to incorporate experience replay for off-policy training, where the
sampling policy is no longer a single policy, but rather a mixture of policies from past iterations.

3.2 EXPERIENCE REPLAY AND OFF-POLICY LEARNING

A crucial design decision of AWR is the choice of sampling policy µ(a|s). Standard implementa-
tions of RWR typically follow an on-policy approach, where the sampling policy is selected to be
the current policy µ(a|s) = πk(a|s) at iteration k. This can be sample inefficient, as data collected
at each iteration of the algorithms are discarded after a single update iteration. Importance sam-
pling can be incorporated into RWR to reuse data from previous iterations, but at the cost of larger
variance from the importance sampling estimator (Kober & Peters, 2009). Instead, we can improve
sample efficiency of AWR by incorporating experience replay and explicitly accounting for training
data from a mixture of multiple prior policies. As described in Algorithm 1, at each iteration, AWR
collects a batch of data using the latest policy πk, and then stores this data in a replay buffer D,
which also contains data collected from previous policies {π1, · · · , πk}. The value function and
policy are then updated using samples drawn from D. This replay strategy is analogous to modeling
the sampling policy as a mixture of policies from previous iterations µk(τ) =

∑k
i=1 wiπi(τ), where

πi(τ) = p(τ |πi) represents the likelihood of a trajectory τ under a policy πi from the ith iteration,
and the weights

∑
i wi = 1 specify the probabilities of selecting each policy πi.

We now extend the derivation from the previous section to the off-policy setting with experience re-
play, and show that Algorithm 1 indeed optimizes the expected improvement over a sampling policy
modeled by the replay buffer. Given a replay buffer consisting of trajectories from past policies, the
joint state-action distribution of µ is given by µ(s,a) =

∑k
i=1 widπi(s)πi(a|s), and similarly for

the marginal state distribution dµ(s) =
∑k
i=1 widπi(s). The expected improvement can now be ex-

pressed with respect to the set of sampling policies in the replay buffer: η(π) = J(π)−
∑
i wiJ(πi).

Similar to Equation 3, η(π) can be expressed in terms of the advantage Aπi(s,a) = Rπis,a − V πi(s)
of each sampling policies,

η(π) = J(π)−
∑
i

wiJ(πi) = Es∼dπ(s)Ea∼π(a|s)

[∑
i

wiA
πi(s,a)

]
. (11)

As before, we can optimize an approximation η̂(π) of η(π) using the state distribution of µ,

η̂(π) = Es∼dµ(s)Ea∼π(a|s) [Aπi(s,a)] =

k∑
i=1

wi

(
Es∼dπi (s)Ea∼π(a|s) [Aπi(s,a)]

)
(12)
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In Appendix B, we show that the update procedure in Algorithm 1 optimizes the following objective:

arg max
π

k∑
i=1

wi

(
Es∼dπi (s)Ea∼π(a|s) [Aπi(s,a)]

)
(13)

s.t. Es∼dµ(s) [DKL (π(·|s)||µ(·|s))] ≤ ε, (14)

where µ(a|s) = µ(s,a)
dµ(s)

=
∑
i widπi (s)πi(a|s)∑

j wjdπj (s)
represents the conditional action distribution defined

by the replay buffer. This objective can be solved via the Lagrangian to yield the following update:

arg max
π

k∑
i=1

wi Es∼dπi (s)Ea∼πi(a|s)

[
log π(a|s) exp

(
1

β

(
Rπis,a −

∑
j wjdπj (s)V

πj (s)∑
j wjdπj (s)

))]
,

(15)
where the expectations can be approximated by simply sampling from D following Line 6 of Algo-
rithm 1. A detailed derivation is available in Appendix B. Note, the baseline in the exponent now
consists of an average of the value functions of the different policies. One approach for estimating
this quantity would be to fit separate value functions V πi for each policy. However, if only a small
amount of data is available from each policy, then V πi could be highly inaccurate (Fu et al., 2019).
Therefore, instead of learning separate value functions, we fit a single mean value function V̄ (s)
that directly estimates the weighted average of V πi ’s,

V̄ = arg min
V

∑
i

wi Es,∼dπi (s)Ea∼πi(a|s)
[
||Rπis,a − V (s)||2

]
(16)

This loss can also be approximated by simply sampling from the replay buffer following Line 5 of
Algorithm 1. The optimal solution V̄ (s) =

∑
i widπi (s)V

πi (s)∑
j wjdπj (s)

is exactly the baseline in Equation 15.

3.3 IMPLEMENTATION DETAILS

Finally, we discuss several design decisions that are important for a practical implementation of
AWR. An overview of AWR is provided in Algorithm 1. The policy update in Equation 10 requires
sampling states from the discounted state distribution dµ(s). However, we found that simply sam-
pling states uniformly from D was also effective, and simpler to implement. This is a common
strategy used in standard implementations of RL algorithms (Dhariwal et al., 2017). When updat-
ing the value function and policy, Monte Carlo estimates can be used to approximate the expected
return RDs,a of samples in D, but this can result in a high-variance estimate. Instead, we opt to
approximate RDs,a using TD(λ) to obtain a lower-variance estimate (Sutton & Barto, 1998). TD(λ)
is applied by bootstrapping with the value function V Dk−1(s) from the previous iteration. A simple
Monte Carlo return estimator can also be used though, as shown in our experiments, but this pro-
duces somewhat worse results. To further simplify the algorithm, instead of adaptively updating the
Lagrange multiplier β, as is done in previous methods (Peters & Schaal, 2007; Peters et al., 2010;
Abdolmaleki et al., 2018), we find that simply using a fixed constant for β is also effective. The
weights ωDs,a = exp

(
1
β

(
RDs,a − V D(s)

))
used to update the policy can occasionally assume ex-

cessively large values, which can cause gradients to explode. We therefore apply weight clipping
ω̂Ds,a = min

(
ωDs,a, ωmax

)
with a threshold ωmax to mitigate issues due to exploding weights.

4 RELATED WORK

Existing RL methods can be broadly categorized into on-policy and off-policy algorithms (Sutton &
Barto, 1998). On-policy algorithms generally update the policy using data collected from the same
policy. A popular class of on-policy algorithms is policy gradient methods (Williams, 1992; Sutton
et al., 2000), which have been shown to be effective for a diverse array of complex tasks (Heess et al.,
2017; Pathak et al., 2017; Peng et al., 2018; Rajeswaran et al., 2018). However, on-policy algorithms
are typically data inefficient, requiring a large number of interactions with the environment, making
it impractical to directly apply these techniques to domains where environmental interactions can be
costly (e.g. robotics and other real world applications). Off-policy algorithms improve sample effi-
ciency by enabling a policy to be trained using data from other sources, such as data collected from
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different agents or data from previous iterations of the algorithm. Importance sampling is a sim-
ple strategy for incorporating off-policy data (Sutton & Barto, 1998; Meuleau et al., 2000; Hachiya
et al., 2009), but can introduce optimization instabilities due to the potentially large variance of
the importance sampling estimator. Dynamic programming methods based on Q-function learning
can also leverage off-policy data (Precup et al., 2001; Mnih et al., 2015; Lillicrap et al., 2016; Gu
et al., 2016; Haarnoja et al., 2018b). But these methods can be notoriously unstable, and in practice,
require a variety of stabilization techniques to ensure more consistent performance (Hasselt et al.,
2016; Wang et al., 2016; Munos et al., 2016; Hessel et al., 2017; Fujimoto et al., 2018; Nachum et al.,
2018; Fu et al., 2019). Furthermore, it can be difficult to apply these methods to learn from fully
off-policy data, where an agent is unable to collect additional environmental interactions (Fujimoto
et al., 2019; Kumar et al., 2019).

Alternatively, policy search can also be formulated under an expectation-maximization framework.
This approach has lead to a variety of EM-based RL algorithms (Peters et al., 2010; Neumann,
2011; Abdolmaleki et al., 2018), an early example of which is reward-weighted regression (RWR)
(Peters & Schaal, 2007). RWR presents a simple on-policy RL algorithm that casts policy search
as a supervised regression problem. A similar algorithm, relative entropy policy search (REPS)
(Peters et al., 2010), can also be derived from the dual formulation of a constrained policy search
problem. RWR has a number appealing properties: it has a very simple update rule, and since
each iteration corresponds to supervised learning, it can be more stable and easier to implement than
many of the previously mentioned RL methods. Despite these advantages, RWR has not been shown
to be an effective RL algorithm when combined with neural network function approximators, as
demonstrated in prior work and our own experiments (Schulman et al., 2015; Duan et al., 2016). In
this work, we propose a number of modifications to the formulation of RWR to produce an effective
off-policy deep RL algorithm, while still retaining much of the simplicity of previous methods.

The most closely related prior works to our method are REPS (Peters et al., 2010) and MPO (Abdol-
maleki et al., 2018), both of which are based on a constrained policy search formulation, and perform
policy updates using supervised regression. The optimization problem being solved in REPS is sim-
ilar to AWR, but REPS optimizes the expected return instead of the expected improvement. The
weights in REPS also contains a Bellman error term that superficially resembles advantages, but are
computed using a linear value function derived from a feature matching constraint. Learning the
REPS value function requires minimization of a dual function, which is a complex function of the
Bellman error, while the value function in AWR can be learned with simple supervised regression.
REPS can in principle leverage off-policy data, but the policy iteration procedure proposed for REPS
models the sampling policy using only the latest policy, and does not incorporate experience replay
with data from previous iterations. More recently, Abdolmaleki et al. (2018) proposed MPO, a deep
RL variant of REPS, which applies a partial EM algorithm for policy optimization. The method
first fits a Q-function of the current policy via bootstrapping, and then performs a policy improve-
ment step with respect to this Q-function under a trust region constraint that penalizes large policy
changes. MPO uses off-policy data for training a Q-function critic via bootstrapping and employs
Retrace(λ) for off-policy correction (Munos et al., 2016). In contrast, AWR is substantially simpler,
as it can simply fit a value function to the observed returns in a replay buffer, and performs weighted
supervised regression on the actions to fit the policy.

5 EXPERIMENTS

Our experiments aim to comparatively evaluate the performance of AWR to commonly used on-
policy and off-policy deep RL algorithms. We evaluate our method on the OpenAI Gym bench-
marks (Brockman et al., 2016), consisting of discrete and continuous control tasks. We also evaluate
our method on complex motion imitation tasks with high-dimensional simulated characters, includ-
ing a 34 DoF humanoid and 82 DoF dog (Peng et al., 2018). We then demonstrate the effectiveness
of AWR on fully off-policy learning, by training on static datasets of demonstrations collected from
demo policies. Behaviors learned by the policies are best seen in the supplementary video1. Code
for our implementation of AWR is available at xbpeng.github.io/projects/AWR/. At each iteration,
the agent collects a batch of approximately 2000 samples, which are stored in the replay buffer D
along with samples from previous iterations. The replay buffer stores 50k of the most recent sam-
ples. Updates to the value function and policy are performed by uniformly sampling minibatches of
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(a) HalfCheetah-v2 (b) Hopper-v2

(c) LunarLander-v2 (d) Walker2d-v2

Figure 2: Snapshots of AWR policies trained on OpenAI Gym tasks. Our simple algorithm learns
effective policies for a diverse set of discrete and continuous control tasks.

256 samples from D. The value function is updated with 200 gradient steps per iteration, and the
policy is updated with 1000 steps. Detailed hyperparameter settings are provided in Appendix C.

5.1 BENCHMARKS

We compare AWR to a number of state-of-the-art RL algorithms, including on-policy algorithms,
such as TRPO (Schulman et al., 2015) and PPO (Schulman et al., 2017), off-policy algorithms, such
as DDPG (Lillicrap et al., 2016), TD3 (Fujimoto et al., 2018), and SAC (Haarnoja et al., 2018a),
as well as RWR (Peters & Schaal, 2007), which we include for comparison due to its similarity to
AWR.2 TRPO and PPO use the implementations from OpenAI baselines (Dhariwal et al., 2017).
DDPG, TD3, and SAC uses the implementations from RLkit (Pong, 2019). RWR is a custom im-
plementation following the algorithm described by Peters & Schaal (2007).

Snapshots of the AWR policies are shown in Figure 2. Learning curves comparing the different algo-
rithms on the OpenAI Gym benchmarks are shown in Figure 3, and Table 1 summarizes the average
returns of the final policies across 5 training runs initialized with different random seeds. Overall,
AWR shows competitive performance with the state-of-the-art deep RL algorithms. It significantly
outperforms on-policy methods such as PPO and TRPO in both sample efficiency and asymptotic
performance. While it is not yet as sample efficient as current state-of-the-art off-policy methods,
such SAC and TD3, it is generally able to achieve a similar asymptotic performance, despite us-
ing only simple supervised regression for both policy and value function updates. The complex
Humanoid-V2 task proved to be the most challenging case for AWR, and its performance still lags
well behind SAC. Note that RWR generally does not perform well on any of these tasks. This sug-
gests that, although AWR is simple and easy to implement, the particular modifications it makes
compared to standard RWR are critical for effective performance. To illustrate AWR’s generality
on tasks with discrete actions, we compare AWR to TRPO, PPO, and RWR on LunarLander-v2.
DDPG, TD3, and SAC are not easily applicable to discrete action spaces due to their need to back-
propagate from the Q-function to the policy. On this discrete control task, AWR also shows strong
performance compared to the other algorithms.

5.2 ABLATION EXPERIMENTS

To determine the effects of various design decisions, we evaluate the performance of AWR when key
components of the algorithm have been removed. The experiments include an on-policy version of
AWR (On-Policy), where only data collected from the latest policy is used to perform updates. We
also compare with a version of AWR without the baseline V (s) (No Baseline), which corresponds
to using the standard RWR weights ωs,a = exp( 1

βRs,a), and another version that uses Monte Carlo
return estimates instead of TD(λ) (No TD(λ)). The effects of these components are illustrated in
Figure 4. Overall, these design decisions appear to be vital for an effective algorithm, with the most

2While we attempted to compare to MPO (Abdolmaleki et al., 2018), we were unable to find source code
for an implementation that reproduces results comparable to those reported by Abdolmaleki et al. (2018), and
could not implement the algorithm such that it achieves similar performance to those reported by the authors.
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Figure 3: Learning curves of the various algorithms when applied to OpenAI Gym tasks. Results
are averaged across 5 random seeds. AWR is generally competitive with the best current methods.

Task TRPO PPO DDPG TD3 SAC RWR AWR (Ours)
Ant-v2 2901± 85 1161± 389 72± 1550 4285± 671 5909± 371 181± 19 5067± 256
HalfCheetah-v2 3302± 428 4920± 429 10563± 382 4309± 1238 9297± 1206 1400± 370 9136± 184
Hopper-v2 1880± 337 1391± 304 855± 282 935± 489 2769± 552 605± 114 3405± 121
Humanoid-v2 552± 9 695± 59 4382± 423 81± 17 8048± 700 509± 18 4996± 697
LunarLander-v2 104± 94 121± 49 − − − 185± 23 229± 2
Walker2d-v2 2765± 168 2617± 362 401± 470 4212± 427 5805± 587 406± 64 5813± 483

Table 1: Final returns for different algorithms on the OpenAI Gym tasks, with ± corresponding to
one standard deviation of the average return across 5 random seeds. In terms of final performance,
AWR generally performs comparably or better than prior methods.

crucial components being the use of experience replay and a baseline. Updates using only on-policy
data can lead to instabilities and result in noticeable degradation in performance, which may be due
to overfitting on a smaller dataset. This issue might be mitigated by collecting a larger batch of
on-policy data per iteration, but this can also negatively impact sample efficiency. Removing the
baseline also noticeably hampers performance. Using simple Monte Carlo return estimates instead
of TD(λ) seems to be a viable alternative, and the algorithm still achieves competitive performance
on some tasks. When combined, these different components yield substantial performance gains
over standard RWR.

To better evaluate the effect of experience replay on AWR, we compare the performance of policies
trained with different capacities for the replay buffer. Figure 4 illustrates the learning curves for
buffers of size 5k, 20k, 50k, 100k, and 500k, with 50k being the default buffer size in our exper-
iments. The size of the replay buffer appears to have a significant impact on overall performance.
Smaller buffer sizes can result in instabilities during training, which again may be an effect of over-
fitting to a smaller dataset. As the buffer size increases, AWR remains stable even when the dataset
is dominated by off-policy data from previous iterations. In fact, performance over the course of
training appears more stable with larger replay buffers, but progress can also become slower. Since
the sampling policy µ(a|s) is modeled by the replay buffer, a larger buffer can limit the rate at which
µ changes by maintaining older data for more iterations. Due to the trust region penalty in Equa-
tion 7, a slower changing µ also prevents the policy π from changing quickly. The replay buffer
therefore provides a simple mechanism to trade-off between stability and learning speed.

5.3 MOTION IMITATION

The Gym benchmarks present relatively low-dimensional tasks. In this section, we study how AWR
can solve higher-dimensional tasks with complex simulated characters, including a 34 DoF hu-
manoid and 82 DoF dog. The objective of the tasks is to imitate reference motion clips recorded
using motion capture from real world subjects. The experimental setup follows the motion imita-
tion framework proposed by Peng et al. (2018). Motion clips are collected from publicly available
datasets (CMU; SFU; Zhang et al., 2018). The skills include highly dynamics motions, such as
spinkicks and canters (i.e. running), and motions that requires more coordinated movements of the
character’s body, such as a cartwheel. Snapshots of the behaviors learned by the AWR policies are
available in Figure 5. Table 2 compares the performance of AWR to RWR and the highly-tuned PPO
implementation from Peng et al. (2018). Learning curves for the different algorithms are shown in
Figure 6. AWR performs well across the set of challenging skills, consistently achieving compa-
rable or better performance than PPO. RWR struggles with controlling the humanoid, but exhibits
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Figure 4: Left: Learning curves comparing AWR with various components removed. Each com-
ponent appears to contribute to improvements in performance, with the best performance achieved
when all components are combined. Right: Learning curves comparing AWR with different ca-
pacity replay buffers. AWR remains stable with large replay buffers containing primarily off-policy
data from previous iterations of the algorithm.

(a) Humanoid: Cartwheel (b) Humanoid: Spinkick

(c) Dog: Trot (d) Dog: Turn

Figure 5: Snapshots of 34 DoF humanoid and 82 DoF dog trained with AWR to imitate reference
motion recorded from real world subjects. AWR is able to learn sophisticated skills with characters
with large numbers of degrees of freedom.

stronger performance on the dog. This performance difference may be due to the more dynamic and
acrobatic skills of the humanoid, compared to the more standard locomotion skills of the dog.

5.4 OFF-POLICY LEARNING WITH STATIC DATASETS

Since AWR is an off-policy RL algorithm, it has the advantage of being able to leverage data
from other sources. This not only accelerates the learning process on standard tasks, as dis-
cussed above, but also allows us to apply AWR in a fully off-policy setting, where the algorithm
is provided with a static dataset of transitions, and then tasked with learning the best possible pol-
icy. To evaluate our method in this setting, we use the off-policy tasks proposed by Kumar et al.
(2019). The objective of these tasks is to learn policies solely from static datasets, without collect-
ing any additional data from the policy that is being trained. The dataset consists of trajectories
τ = {(s0,a0, r0) , (s1,a1, r1) , ...} from rollouts of a demo policy. Unlike standard imitation learn-
ing tasks, which only observes the states and actions from the demo policy, the dataset also provides
the reward received by the demo policy at each step. The demo policies are trained using SAC on
various OpenAI Gym tasks. A dataset of 1 million timesteps is collected for each task.

For AWR, we simply treat the dataset as the replay buffer D and directly apply the algorithm with-
out additional modifications. Figure 7 compares AWR with other algorithms when applied to the
datasets. We include comparisons to the performance of the original demo policy used to gener-
ate the dataset (Demo) and a behavioral cloning policy (BC). The comparisons also include recent
off-policy methods: batch-constrained Q-learning (BCQ) (Fujimoto et al., 2019) and bootstrapping
error accumulation reduction (BEAR) (Kumar et al., 2019), which have shown strong performance
on off-policy learning with static datasets. Note that both of these prior methods are modifications
to existing off-policy RL methods, such as TD3 and SAC, which are already quite complex. In
contrast, AWR is simple and requires no modifications for the fully off-policy setting. Despite not
collecting any additional data, AWR is able to learn effective policies from these fully off-policy
datasets, achieving comparable or better performance than the original demo policies. On-policy
methods, such as PPO performs poorly in this off-policy setting. Q-function based methods, such
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Task PPO RWR AWR (Ours)
Humanoid:
Cartwheel 0.76± 0.02 0.03± 0.01 0.78± 0.07

Humanoid:
Spinkick 0.70± 0.02 0.05± 0.03 0.77± 0.04

Dog: Canter 0.76± 0.03 0.78± 0.04 0.86± 0.01
Dog: Trot 0.86± 0.01 0.86± 0.01 0.86± 0.03
Dog: Turn 0.75± 0.02 0.75± 0.03 0.82± 0.03

Table 2: Performance statistics of algorithms on
the motion imitation tasks. Returns are normal-
ized between the minimum and maximum possi-
ble returns per episode.

Figure 6: Learning curves on motion imitation
tasks. On these challenging tasks, AWR generally
learns faster than PPO and RWR.

Figure 7: Performance of various algorithms on off-policy learning tasks with static datasets. AWR
is able to learn policies that are comparable or better than the original demo policies.

as TD3 and SAC, can in principle handle off-policy data but, as discussed in prior work, tend to
struggle in this setting in practice (Fujimoto et al., 2019; Kumar et al., 2019). Indeed, standard
behavioral cloning (BC) often outperforms these standard RL methods. In this fully off-policy set-
ting, AWR can be interpreted as an advantage-weighted form of behavioral cloning, which assigns
higher likelihoods to demonstration actions that receive higher advantages. AWR also shows com-
parable performance to BEAR and BCQ, which are specifically designed for this off-policy setting
and introduce considerable algorithmic overhead.

6 DISCUSSION AND FUTURE WORK

We presented advantage-weighted regression, a simple off-policy reinforcement learning algorithm,
where policy updates are performed using standard supervised learning methods. Despite its sim-
plicity, our algorithm is able to solve challenging control tasks with complex simulated agents, and
achieve competitive performance on standard benchmarks compared to a number of well-established
RL algorithms. Our derivation introduces several new design decisions, and our experiments ver-
ify the importance of these components. AWR is also able to learn from fully off-policy datasets,
demonstrating comparable performance to state-of-the-art off-policy methods. While AWR is effec-
tive for a diverse suite of tasks, it is not yet as sample efficient as the most efficient off-policy algo-
rithms. We believe that exploring techniques for improving sample efficiency and performance on
fully off-policy learning can open opportunities to deploy these methods in real world domains. We
are also interested in exploring applications that are particularly suitable for these regression-based
RL algorithms, as compared to other classes of RL techniques. A better theoretical understanding of
the convergence properties of these algorithms, especially when combined with experience replay,
could also be valuable for the development of future algorithms.
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A AWR DERIVATION

In this section, we derive the AWR algorithm as an approximate optimization of a constrained policy
search problem. Our goal is to find a policy that maximize the expected improvement η(π) =
J(π) − J(µ) over a sampling policy µ(a|s). We start with a lemma from Kakade & Langford
(2002), which shows that the expected improvement can be expressed in terms of the advantage
Aµ(s,a) = Rµs,a − V µ(s) with respect to the sampling policy µ, where Rµs,a denotes the return
obtained by performing action a in state s and following µ for the following timesteps, and V µ(s) =∫
a
µ(a|s)Ra

s da corresponds to the value function of µ,

Eτ∼pπ(τ)

[ ∞∑
t=0

γtAµ(st,at)

]
(17)

= Eτ∼pπ(τ)

[ ∞∑
t=0

γt (r(st,at) + γV µ(st+1)− V µ(st))

]
(18)

= Eτ∼pπ(τ)

[
−V µ(s0) +

∞∑
t=0

γtr(st,at)

]
(19)

= −Es0∼p(s0) [V µ(s0)] + Eτ∼pπ(τ)

[ ∞∑
t=0

γtr(st,at)

]
(20)

= −J(µ) + J(π) (21)

We can rewrite Equation 22 with an expectation over states instead of trajectories:

η(π) = Eτ∼pπ(τ)

[ ∞∑
t=0

γtAµ(st,at)

]
(22)

=

∞∑
t=0

∫
s

p(st = s|π)

∫
a

π(a|s)γtAµ(s,a) da ds (23)

=

∫
s

∞∑
t=0

γtp(st = s|π)

∫
a

π(a|s)Aµ(s,a) da ds (24)

=

∫
s

dπ(s)

∫
a

π(a|s)
[
Rµs,a − V µ(s)

]
da ds, (25)

where dπ(s) =
∑∞
t=0 γ

tp(st = s|π) represents the unnormalized discounted state distribution
induced by the policy π (Sutton & Barto, 1998), and p(st = s|π) is the likelihood of the agent being
in state s after following π for t timesteps.

The objective in Equation 25 can be difficult to optimize due to the dependency between dπ(s) and
π, as well as the need to collect samples from π. Following Schulman et al. (2015), we can optimize
an approximation η̂(π) of η(π) using the state distribution of µ,

η̂(π) =

∫
s

dµ(s)

∫
a

π(a|s)
[
Rµs,a − V µ(s)

]
da ds. (26)

η̂(π) matches η(π) to first order (Kakade & Langford, 2002), and provides a reasonable estimate of
η if π and µ are similar. Using this objective, we can formulate the following constrained policy
search problem:

arg max
π

∫
s

dµ(s)

∫
a

π(a|s)
[
Rµs,a − V µ(s)

]
da ds (27)

s.t. DKL (π(·|s)||µ(·|s)) ≤ ε, ∀ s (28)∫
a

π(a|s) da = 1, ∀ s. (29)

Since enforcing the pointwise KL constraint in Equation 28 at all states is intractable, we relax
the constraint by enforcing it only in expectation

∫
s
dµ(s)DKL (π(·|s)||µ(·|s)) ds ≤ ε. To further
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simplify the optimization problem, we relax the hard KL constraint by converting it into a soft
constraint with coefficient β,

arg max
π

(∫
s

dµ(s)

∫
a

π(a|s)
[
Rµs,a − V µ(s)

]
da ds

)
+ β

(
ε−

∫
s

dµ(s)DKL (π(·|s)||µ(·|s)) ds
)

s.t.
∫
a

π(a|s) da = 1, ∀ s.
(30)

Next we form the Lagrangian,

L(π, β, α) =

(∫
s

dµ(s)

∫
a

π(a|s)
[
Rµs,a − V µ(s)

]
da ds

)
+ β

(
ε−

∫
s

dµ(s)DKL (π(·|s)||µ(·|s)) ds
)

+

∫
s

αs

(
1−

∫
a

π(a|s)da
)
ds,

(31)
with β and α = {αs | ∀s ∈ S} corresponding to the Lagrange multipliers. DifferentiatingL(π, β, α)
with respect to π(a|s) results in

∂L
∂π(a|s)

= dµ(s)
(
Rµs,a − V µ(s)

)
− β dµ(s) logπ(a|s) + βdµ(s)logµ(a|s)− βdµ(s)− αs.

(32)
Setting to zero and solving for π(a|s) gives

logπ(a|s) =
1

β

(
Rµs,a − V µ(s)

)
+ logµ(a|s)− 1− 1

dµ(s)

αs

β
(33)

π(a|s) = µ(a|s)exp

(
1

β

(
Rµs,a − V µ(s)

))
exp

(
− 1

dµ(s)

αs

β
− 1

)
(34)

Since
∫
a
π(a|s) da = 1, the second exponential term is the partition function Z(s) that normalizes

the conditional action distribution,

Z(s) = exp

(
1

dµ(s)

αs

β
+ 1

)
=

∫
a′
µ(a′|s) exp

(
1

β

(
Rµs,a′ − V µ(s)

))
da′. (35)

The optimal policy is therefore given by,

π∗(a|s) =
1

Z(s)
µ(a|s) exp

(
1

β

(
Rµs,a − V µ(s)

))
(36)

If π is represented by a function approximator, the optimal policy π∗ can be projected onto the
manifold of parameterized policies by solving the following supervised regression problem

arg min
π

Es∼dµ(s) [DKL (π∗(·|s)||π(·|s))] (37)

= arg min
π

Es∼dµ(s)

[
DKL

(
1

Z(s)
µ(a|s) exp

(
1

β

(
Rµs,a − V µ(s)

))∣∣∣∣∣∣∣∣π(·|s)
)]

(38)

= arg max
π

Es∼dµ(s)Ea∼µ(a|s)

[
log π(a|s) exp

(
1

β

(
Rµs,a − V µ(s)

))]
, (39)

B AWR DERIVATION WITH EXPERIENCE REPLAY

In this section, we extend the derivation presented in Appendix A to incorporate experience replay
using a replay buffer containing data from previous policies. To recap, the sampling distribution is a
mixture of k past policies {π1, · · · , πk}, where the mixture is performed at the trajectory level. First,
we define the trajectory distribution µ(τ), marginal state-action distribution µ(s,a), and marginal
state distribution dµ(s) of the replay buffer according to:

µ(τ) =

k∑
i=1

widπi(τ), µ(s,a) =

k∑
i=1

widπi(s)πi(a|s), dµ(s) =

k∑
i=1

widπi(s) (40)
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where the weights
∑
i wi = 1 specify the probabilities of selecting each policy πi. The conditional

action distribution µ(a|s) induced by the replay buffer is given by:

µ(a|s) =
µ(s,a)

dµ(s)
=

∑k
i=1 widπi(s)πi(a|s)∑k

j=1 wjdπj (s)
. (41)

Next, using Lemma 6.1 from Kakade & Langford (2002) (also derived in Appendix A), the expected
improvement of π over each policy πi satisfies

J(π) = J(πi) + Es∼dπ(s),a∼π(a|s) [Aπi(s,a)] (42)

The expected improvement over the mixture can then be expressed with respect to the individual
policies,

η(π) = J(π)− J(µ) (43)

= J(π)−
k∑
i=1

wiJ(πi) (44)

=

k∑
i=1

wi (J(π)− J(πi)) (45)

=

k∑
i=1

wi
(
Es∼dπ(s),a∼π(a|s) [Aπi(s,a)]

)
(46)

In order to ensure that the policy π is similar to the past policies, we constrain π against the condi-
tional action distributions of the replay buffer,

Es∼µ(s)

[
DKL

(
π(a|s)

∣∣∣∣∣∣µ(a|s)
)]
≤ ε. (47)

Note that constraining π against µ(a|s) has a number of desirable properties. First, the con-
straint prevents the policy π from choosing actions that are vastly different from all of the policies
{π1, · · · , πk}. Second, the mixture weight assigned to each πi in the definition of µ depends on the
marginal state density dπi(s) for the particular policy. This property is desirable as the policy π is
now constrained to be similar to πi only at states that are likely to be visited by πi. This then yields
the following constrained objective:

arg max
π

k∑
i=1

wi Es∼dπi (s)Ea∼π(a|s)
[
Rπis,a − V πi(s)

]
(48)

s.t. Es∼dµ(s) [DKL (π(·|s)||µ(·|s))] ≤ ε, (49)∫
a

π(a|s) da = 1, ∀ s. (50)

The Lagrangian of the above objective is given by:

L(π, β, α) =

(∑
i

wiEs∼dπi (s)Ea∼π(a|s)
[
Rπis,a − V πi(s)

])

+ β

(
ε− Es∼dµ(s)DKL

(
π(·|s)

∣∣∣∣∣
∣∣∣∣∣
∑k
i=1 widπi(s)πi(·|s)∑k

j=1 wjdπj (s)

))

+

∫
s

αs

(
1−

∫
a

π(a|s)da
)
ds,

(51)

Solving the Lagrangian following the same procedure as Appendix A leads to an optimal policy of
the following form:

π∗(a|s) =
1

Z(s)
µ(a|s) exp

(
1

β

∑
i widπi(s)

(
Rπis,a − V πi(s)

)∑
j wjdπj (s)

)
(52)
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Finally, if π is represented by a function approximator, the optimal policy π∗ can be projected onto
the manifold of parameterized policies by solving the following supervised regression problem

arg min
π

Es,∼dµ(s) [DKL (π∗(·|s)||π(·|s))] (53)

= arg min
π

Es∼dµ(s)

[
DKL

(
1

Z(s)
µ(a|s) exp

(
1

β

∑
i widπi(s)

(
Rπis,a − V πi(s)

)∑
j wjdπj (s)

)∣∣∣∣∣
∣∣∣∣∣π(·|s)

)]
(54)

One of the challenges of optimizing the objective in Equation 54 is that computing the expected
return in the exponent requires rolling out multiple policies starting from the same state, which
would require the environment to be resettable to any given state. Therefore, to obtain a more
practical objective, we approximate the expected return across policies using a single rollout from
the replay buffer, ∑

i widπi(s)Rπis,a∑
j wjdπj (s)

≈ RDs,a such that (s,a) ∈ D (55)

This single-sample estimator results in a biased estimate of the exponentiated advantage, because
the expectation with respect to the mixture weights appears in the exponent. But in practice, we find
this biased estimator to be effective for our experiments. Therefore, the objective used in practice is
given by:

arg max
π

k∑
i=1

wi Es∼dπi (s)Ea∼πi(a|s)

[
log π(a|s) exp

(
1

β

(
Rπis,a −

∑
j wjdπj (s)V

πj (s)∑
j wjdπj (s)

))]
,

(56)
where the expectations can be approximated by simply sampling from D following Line 6 of Algo-
rithm 1. Note, the baseline in the exponent now consists of an average of the value functions of the
different policies. One approach for estimating this quantity would be to fit separate value functions
V πi for each policy. However, if only a small amount of data is available from each policy, then V πi
could be highly inaccurate. Therefore, instead of learning separate value functions, we fit a single
mean value function V̄ (s) that directly estimates the weighted average of V πi ’s,

V̄ = arg min
V

∑
i

wi Es,∼dπi (s)Ea∼πi(a|s)
[
||Rπis,a − V (s)||2

]
(57)

This loss can also be approximated by simply sampling from the replay buffer following Line 5 of
Algorithm 1. The optimal solution V̄ (s) =

∑
i widπi (s)V

πi (s)∑
j wjdπj (s)

is exactly the baseline in Equation 56.

C EXPERIMENTAL SETUP

In our experiments, the policy is represented by a fully-connected network with 2 hidden layers
consisting of 128 and 64 ReLU units respectively (Nair & Hinton, 2010), followed by a linear
output layer. The value function is modeled by a separate network with a similar architecture, but
consists of a single linear output unit for the value. Stochastic gradient descent with momentum is
used to update both the policy and value function. The stepsize of the policy and value function are
5×10−5 and 1×10−4 respectively, and a momentum of 0.9 is used for both. The temperature is set to
β = 0.05 for all experiments, and λ = 0.95 is used for TD(λ). The weight clipping threshold ωmax

is set to 20. At each iteration, the agent collects a batch of approximately 2000 samples, which
are stored in the replay buffer D along with samples from previous iterations. The replay buffer
stores 50k of the most recent samples. Updates to the value function and policy are performed by
uniformly sampling minibatches of 256 samples from D. The value function is updated with 200
gradient steps per iteration, and the policy is updated with 1000 gradient steps.
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D LEARNING CURVES

Figure 8: Learning curves of the various algorithms when applied to OpenAI Gym tasks. Results
are averaged over 5 random seeds. AWR is generally competitive with the best current methods.

Figure 9: Learning curves on motion imitation tasks. On these challenging tasks, AWR generally
learns faster than PPO and RWR.
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