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Fig. 1. We present Auto-Regressive Motion Diffusion Model (A-MDM), a framework for generating high-fidelity kinematic motion sequences. Once trained,
A-MDM can be reused to perform new tasks through different control strategies, such as inpainting (upper right, and lower left), and hierarchical control via
reinforcement learning (lower right).
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Real-time character control is an essential component for interactive expe-
riences, with a broad range of applications, including physics simulations,
video games, and virtual reality. The success of diffusion models for image
synthesis has led to the use of these models for motion synthesis. However,
the majority of these motion diffusion models are primarily designed for
offline applications, where space-time models are used to synthesize an
entire sequence of frames simultaneously with a pre-specified length. To
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enable real-time motion synthesis with diffusion model that allows time-
varying controls, we propose A-MDM (Auto-regressive Motion Diffusion
Model). Our conditional diffusion model takes an initial pose as input, and
auto-regressively generates successive motion frames conditioned on the
previous frame. Despite its streamlined network architecture, which uses
simple MLPs, our framework is capable of generating diverse, long-horizon,
and high-fidelity motion sequences. Furthermore, we introduce a suite of
techniques for incorporating interactive controls into A-MDM, such as task-
oriented sampling, in-painting, and hierarchical reinforcement learning (See
Figure 1). These techniques enable a pre-trained A-MDM to be efficiently
adapted for a variety of new downstream tasks. We conduct a comprehen-
sive suite of experiments to demonstrate the effectiveness of A-MDM, and
compare its performance against state-of-the-art auto-regressive methods.

CCS Concepts: • Computing methodologies → Computer graphics;
Animation; Motion processing.

Additional Key Words and Phrases: Motion Synthesis, Diffusion Model,
Reinforcement Learning
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1 INTRODUCTION
Synthesizing high-fidelity and controllable motions for virtual char-
acters is one of the central challenges in computer animation, with
broad applications for visual effects, games, simulations, and virtual
reality. The intricate nature of human motion, which encompasses
a vast array of styles and tasks, presents a formidable challenge
for high-quality motion generation. In recent years, researchers
have drawn on the success of data-driven methods utilized in text
and image synthesis to address these challenges [Ho et al. 2020;
Rombach et al. 2022; Ruiz et al. 2022; Saharia et al. 2022; Song et al.
2021]. These methods have achieved promising results in terms of
motion quality and diversity. Among them, diffusion models have
shown great potential in synthesizing diverse and high-quality mo-
tion sequences. However, the majority of these methods employ
space-time models to generate sequences of frames simultaneously
via a single diffusion process [Dabral et al. 2023; Huang et al. 2023;
Ma et al. 2022; Raab et al. 2023; Shafir et al. 2023; Tevet et al. 2023;
Xin et al. 2023; Zhang et al. 2022, 2023a]. This approach inherently
restricts the applicability of diffusion models for tasks that require
real-time interactivity.

In this work, we present Auto-regressive Motion Diffusion Mod-
els (A-MDM), a redesign of the motion diffusion model in an auto-
regressive form to generate motions frame-by-frame. To improve
run-time performance, our approach predicts the next frame using
under 50 denoising steps, which is significantly less than the 1000
steps commonly used in prior methods [Shafir et al. 2023; Tevet et al.
2023; Xin et al. 2023], thus enabling our model to run in real-time
with modest computational resources. This design choice, combined
with our incremental frame-by-frame generation approach, allows
our A-MDM model to be used for motion control applications with
real-time user inputs. Through both qualitative and quantitative
assessments, we show that this lightweight design still retains com-
petitive performance in terms of motion quality and diversity when

compared to state-of-the-art motion synthesis models. Our model
can be effectively trained using large-scale motion datasets, such
as AMASS [Mahmood et al. 2019]. Furthermore, we also explore
techniques for combining A-MDM with high-level policies to create
character controllers for a variety of downstream tasks, such as
joystick control, target reaching, and trajectory tracking.
Once trained, A-MDM can act as a flexible base model that can

be used in a variety of downstream applications. We present a suite
of techniques for controlling A-MDM for downstream tasks, in-
cluding task-oriented sampling, motion in-painting, keyframe in-
betweening, and hierarchical control. The key contributions of this
work include:

• We propose A-MDM, an auto-regressive motion diffusion
model, which is more amenable for real-time interactive char-
acter control. A-MDM can generate more diverse motion
sequences than previous VAE-based auto-regressive mod-
els [Ling et al. 2020; Rempe et al. 2021].

• We present a suite of methods for controlling A-MDM to
synthesize motions for new tasks without any additional
training or fine-tuning of the model.

• We present a hierarchical reinforcement learning approach
for controlling A-MDM, which is able to train hierarchical
policies for new downstream tasks.

2 RELATED WORKS
Developing procedural methods that can automatically synthesize
life-like animations for virtual characters has been one of the funda-
mental problems in computer graphics. A large suite of techniques
has been proposed to tackle this problem, which can be broadly
categorized into kinematic and physics-based techniques [Li et al.
2022; Peng et al. 2018, 2022, 2021; Rempe et al. 2021; Tevet et al.
2023].
Since our work falls into the class of kinematic methods, our

discussion will focus on the most closely related work on kinematic
motion generation. The core of our system is an auto-regressive
motion diffusion model trained on a dataset of motion clips, which
can then reused by a variety of control techniques to synthesize
motions for new downstream tasks.

2.1 Kinematic Motion Generation
Kinematic techniques typically follow one of two main paradigms:
space-time models and auto-regressive models.Space-time models
produce an entire motion sequence simultaneously [Li et al. 2022;
Tevet et al. 2023; Xin et al. 2023; Yan et al. 2019]. Alternatively,
auto-regressive methods generate a motion sequentially frame-by-
frame [Fragkiadaki et al. 2015; Ling et al. 2020; Martinez et al. 2017;
Rempe et al. 2021], allowing greater responsiveness to time-varying
objectives, and enabling these models to be more easily used for
real-time applications. In this paper, we focus on auto-regressive
generation, which can produce motions for real-time interactive
applications. In this section, we will provide a review of both space-
time and auto-regressive methods.

Auto-Regressive Models. Machine learning techniques for auto-
regressive motion generation have often used CNNs, LSTMs, and
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MLPs to sequentially predict the next frame conditioned on previ-
ously generated frames [Aksan et al. 2019; Fragkiadaki et al. 2015;
Gopalakrishnan et al. 2019; Li et al. 2017; Martinez et al. 2017; Pavllo
et al. 2018]. However, applying these models directly to generate
long-horizon motions often leads to drift or convergence to a mean
pose, resulting in unnatural motions. Researchers have introduced
custom architectures to address these issues, which can improve
motion quality and diversity. For instance, phase-functioned neural
networks dynamically blend between different model parameters
based on the motion phase to generate coherent long-horizon mo-
tions [Holden et al. 2017]. However, this dependency on phase
undermines its ability to model acyclic behaviors, and behaviors
that do not progress according to a well defined phase variable.

Variational auto-encoder models (VAE) have been a popular class
of generative model for motion synthesis. These methods leverage
a VAE framework to learn a motion manifold from motion data,
which can enhance diversity and generalization in the generated
motions [Kingma and Welling 2013; Ling et al. 2020; Rempe et al.
2021]. Motion VAE (MVAE) employs a Mixture-of-Expert (MoE)
network alongside a VAE model to generate diverse motions [Ling
et al. 2020].

Humor models the manifold of transitions between two adjacent
frames via a VAE model [Rempe et al. 2021]. Hassan et al. [2021]
utilizes a VAE model to synthesize long-horizon motions of human-
scene interactions. In our work, we introduces an auto-regressive
diffusion model, which leverages the expressive power of diffusion
model to better represent the complex multi-modal nature of human
motions. This expressiveness enables our model to produce more
diverse and higher fidelity motions compared to previous auto-
regressive models.

Space-Time Models. Unlike auto-regressive models, space-time
models generate a sequence of motion frames simultaneously. As re-
sult, these models are typically more suitable for offline applications.
Space-timemodels based on CNNs [Wang et al. 2021; Yan et al. 2019],
and transformer are popular choices in prior studies [Kim et al. 2022;
Petrovich et al. 2021; Wang et al. 2022], as these architectures are
able to capture temporal correlation across long motion sequences.
VAE [Kingma and Welling 2013] and GAN [Goodfellow et al. 2020]
frameworks have been used to trained space-time models.

Recent works have applied diffusion model to space-time motion
synthesis models [Tevet et al. 2023; Zhang et al. 2022]. However,
a common limitation of diffusion models is the significant compu-
tational cost and time needed for sampling, which can preclude
effective use in real-time applications. Xin et al. [2023] attempted to
address this challenge by building a diffusion model in a compact
VAE-encoded latent space. While their method demonstrated some
real-time generation capabilities, the time required to generate a
single frame is still too slow for real-time applications. In this work,
we propose a lightweight auto-regressive diffusion model with spe-
cialized design decisions to speedup generation of motions in an
auto-regressive fashion, which then enables our A-MDM model to
synthesize high-fidelity motions in real-time and respond to inter-
active control inputs.

2.2 Latent-Space Models
Latent-space models typically leverage a learned latent motion
representation, which can then be used to generate new motions
for downstream tasks. Commonly used approaches for learning
such latent-space models utilize generative modeling techniques,
such as VAEs and GANs. MVAE generates motions using latent
motion representations learned through a conditional variational
auto-encoder [Ling et al. 2020]. Won et al. [2022] and Yao et al.
[2022] leverage model-based RL methods to train physics-based
motion VAEs. Once a latent space of motions has been constructed,
these frameworks then train task-specific high-level controllers to
sample the appropriate latent codes for solving new tasks. In prac-
tice, VAE models tend to generate lower-quality results compared
to diffusion models in the image synthesis domain [Bredell et al.
2021; Ho et al. 2020], and similar issues have also been observed for
motion generation with space-time model [Guo et al. 2022; Petro-
vich et al. 2022; Tevet et al. 2023]. In this work, we show that with
the appropriate design decisions, diffusion models can effectively
generate high-quality motions for real-time responsive character
control.

GAN-based models learn a latent motion representation by opti-
mizing a variational approximation of the divergence between the
dataset and samples from the model [Barsoum et al. 2017; Li et al.
2022; Men et al. 2022; Peng et al. 2022, 2021; Tessler et al. 2023].
This is done by training an adversarial discriminator to distin-

guish samples from the dataset and samples from the model, thereby
encouraging the model to produce samples that resemble the data.
However, GAN training tends to be unstable and susceptible to
mode collapse, requiring a myriad of heuristics to stabilize training.

In this paper, our method leverages diffusion models for motion
synthesis, which has been shown to be much more stable and easier
to train compared to GANs. It is also known to achieve better genera-
tion quality and data distribution coverage than adversarial methods
in other domains, such as image synthesis [Prafulla Dhariwal 2021].
To apply VAE and GAN models to new tasks, hierarchical con-

trollers are often trained to select the appropriate behaviors from
the learned latent space that enable a character to fulfill the desired
task objectives [Ling et al. 2020; Peng et al. 2022; Tessler et al. 2023].
We show that A-MDM is also amenable to hierarchical control,

where a task-specific high-level controller can be trained to steer
the denoising process in order to generate motions that satisfies the
desired task objectives.

3 METHOD
Our framework consists of two key components: a base autore-
gressive motion diffusion model (A-MDM) and an RL-based task
controller. The base A-MDM predicts the next motion frame 𝑓 based
on the previous frame 𝑓 − 1. This auto-regressive procedure enables
A-MDM to synthesize long motions of arbitrary lengths in real time.
To achieve task-based character control, we utilize a task-specific
high-level controller, which is trained using reinforcement learning
to direct the base A-MDM model to produce motions that fulfill a
given task objective. This framework enables our system to generate
high-quality, task-oriented motions for a wide range of applications.
Furthermore, we demonstrate that inpainting techniques can also be
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Fig. 2. Framework of our A-MDM. Our A-MDM is trained following DDPM [Ho et al. 2020]. During training, the goal of our A-MDM is to reconstruct
the sampled noise vector 𝜖𝑡

𝑓
at each step. After training, our A-MDM is capable of generating long-horizon motion with arbitrary lengths under different

controlling strategies in an autoregressive manner.

incorporated into our auto-regressive model, which enables users
to directly specify desired characteristics of the generated motions.
We show that the model is able to generate natural and responsive
motions that adhere to the target specifications provided by the
user.

3.1 Auto-regressive Motion Diffusion Model
In this section, we will present the details of our auto-regressive
motion diffusion model. Given the state of the character at frame
𝑓 −1, A-MDMmodels the distribution of possible character states at
frame 𝑓 . The training procedure of A-MDM follows DDPM, where
the model is trained to model the distribution of the motion data by
denoising Gaussian noise introduced by a forward diffusion process.
Once trained this model can then produce diverse, high-fidelity,
and long-horizon motion sequences by sampling from the reverse
diffusion process [Ho et al. 2020].

Motion Representation. Given the initial state 𝑥0, A-MDM can gen-
erate a motion sequence 𝑋 = {𝑥1, 𝑥2, .., 𝑥𝐹 } with arbitrary length
𝐹 in an auto-regressive manner. The state 𝑥 𝑓 at frame 𝑓 is repre-
sented by features consisting of: planar linear velocity of the root
(𝑑𝑥 ∈ R, 𝑑𝑦 ∈ R), angular velocity (𝑑𝑟 ∈ R) around the up-axis,
joint positions ( 𝑗𝑝 ∈ R𝑗×3), joint velocities ( 𝑗𝑣 ∈ R𝑗×3), and joint
orientations in the 6D representation ( 𝑗𝑜 ∈ R𝑗×6) [Zhou et al. 2019].
The root features 𝑑𝑥 , 𝑑𝑦 , and 𝑑𝑟 are recorded in the character’s local
coordinate frame.

Pipeline Overview. Given an input character state, 𝑥 𝑓 −1, A-MDM
predicts a potential next state 𝑥 𝑓 in an auto-regressive manner. The
model is trained using a procedure based on DDPM [Ho et al. 2020],
which includes a forward diffusion process and a backward recon-
struction process. During the forward diffusion process, Gaussian
noise is introduced at each diffusion step 𝑡 into the next state 𝑥𝑡

𝑓
.

This process is applied for𝑇 steps until 𝑥𝑇
𝑓
converges to an isotropic

Gaussian distribution. The backward reconstruction process again

consists of 𝑇 steps, representing a reversed procedure where a con-
ditional denoising model is trained to gradually remove the noise
in 𝑥𝑡

𝑓
conditioned on the previous state 𝑥 𝑓 −1, yielding the final

prediction 𝑥 𝑓 .
During training, Gaussian noise is added progressively through a

Markov process to the ground truth character state 𝑥 𝑓 . For a single
forward step 𝑡 , the noising process is given by:

𝑞(𝑥𝑡
𝑓
|𝑥𝑡−1
𝑓

) = N(𝑥𝑡
𝑓

;
√︁

1 − 𝛽𝑡𝑥𝑡−1
𝑓

, 𝛽𝑡 𝐼 ), (1)

where 𝛽𝑡 ∈ (0, 1) is a hyper-parameter that determines the noise
schedule. The whole forward diffusion process can be described
according to:

𝑞(𝑥1:𝑇
𝑓

|𝑥0
𝑓
) =

𝑇∏
𝑡=1

𝑞(𝑥𝑡
𝑓
|𝑥𝑡−1
𝑓

), (2)

We denote the noise applied to state 𝑥 𝑓 after 𝑡 ∈ [1,𝑇 ] steps as
𝜖𝑡
𝑓
. The denoising process is performed using a neural network 𝑝\ .

The network takes as input the perturbed target state 𝑥𝑡
𝑓
, which is

produced by applying noise 𝜖𝑡
𝑓
from the standard Gaussian distribu-

tion to the state 𝑥0
𝑓
at denoising step 𝑡 + 1. Additional input to the

network includes the previous state 𝑥 𝑓 −1, the time embedding 𝑒𝑡 at
time step 𝑡 . The denonising network then predicts the noise vector
𝜖𝑡
𝑓
that was applied to the original input. An MSE loss is applied

between the predicted noise and the ground truth noise 𝜖𝑡
𝑓
:

𝐿
𝑠𝑖𝑚𝑝𝑙𝑒
𝑡 (𝑥) = E𝑡∼[1:𝑇 ],𝑥0

𝑓
,𝜖𝑡
𝑓
| |𝜖𝑡
𝑓
− 𝑝\ (𝑥 𝑓 −1, 𝑥

𝑡
𝑓
, 𝑒𝑡 ) | |2 . (3)

During inference, the reverse denoising process starts fromGaussian
noise 𝜖𝑇

𝑓
. At each diffusion step 𝑡 , the denoising network predicts

the noise 𝜖𝑡
𝑓
, which is used to reconstruct the original state 𝑥𝑡

𝑓
. Then,

𝑥𝑡
𝑓
serves as the input to the next denoising step. The final predicted

state 𝑥 𝑓 is used as the output 𝑥0
𝑓
after 𝑇 denoising steps.
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Fig. 3. Trajectories for Target Reaching. We show that our framework is capable of generating diverse motion trajectories, with the same initial state and
target goals.

3.2 Scheduled Sampling with Diffusion Model
In Section 3.1, we discussed the basic training and inference pro-
cedure for A-MDM. However, generating motion with an auto-
regressive model is susceptible to drift due to error accumulation.
This phenomenon can lead to catastrophic failures when generating
long-horizon motions. To mitigate drift, prior methods leverage
student forcing within the framework of schedule sampling [Ling
et al. 2020; Rempe et al. 2021]. In comparison to teacher forcing,
where both the input and the target output are sampled from the
training data, student forcing uses the model’s own predicted state
from a past frame 𝑥 𝑓 −1 as the input to predict the subsequent state
𝑥 𝑓 +1. This process can be repeated over multiple steps 𝑁𝑟 . Sched-
uled sampling enables an auto-regressive model to compensate for
drift due to errors in its previous predictions. This can then enable
auto-regressive models to generate long-horizon motions with arbi-
trary length, which is essential for online interactive applications.
In this work, we observed that scheduled sampling is also crucial
for mitigate drift with A-MDM. To implement student forcing, for
every frame 𝑥 𝑓 in a batch of samples, we compute the loss described
in Equation 3, and then use the reconstructed 𝑥𝑡

𝑓
as the next frame

for reconstructing subsequent frames. Following the same proce-
dure, we can sample 𝑁𝑟 subsequent frames auto-regressively from
the model {𝑥 𝑓 +1, 𝑥 𝑓 +2, ..., 𝑥 𝑓 +𝑁𝑟

}. The generated frames are then
used as the input conditioning for computing the training loss for
subsequent frames instead of the ground-truth frames from the
dataset.

3.2.1 Network Architecture. To enable real-time motion control,
our framework leverages a lightweight network architecture for
A-MDM. Unlike prior work, which often uses computationally ex-
pensive architectures, such as Transformers [Tevet et al. 2023; Xin
et al. 2023], our A-MDM model features a streamlined architecture
centered around a lightweight Multi-Layer Perceptron (MLP), as
illustrated in Figure 2. The use of a diffusion model significantly
enhances our model’s capacity, enabling the generation of diverse
and high-quality motions using a simple model architecture. We

demonstrate that using MLPs in diffusion models with fewer de-
noising steps is sufficient for synthesizing high-quality motions,
outperforming prior auto-regressive models, such as MVAE, in both
motion fidelity and diversity. Our model is composed of 10 fully-
connected layers, with each layer containing 1024 hidden units with
SiLU activations followed by a layer norm. The input to this model
includes the state at the previous step 𝑥 𝑓 −1, the perturbed target
state 𝑥𝑡

𝑓
, and the time embedding 𝑒𝑡 of the diffusion step 𝑡 .

Real-time Design Decisions. In diffusion models, a common prac-
tice is to use a large number of diffusion steps (e.g., 1000 steps as
used in DDPM). However, for auto-regressive motion generative
models, like A-MDM, this can lead to slow generation times, render-
ing them impractical for real-time applications. Our experiments
demonstrate that achieving high-quality motion generation with
A-MDM is possible using a smaller number of diffusion steps 𝑇 .
This is in part attributed to the smaller dimensional output for a
single frame compared to an entire motion sequence. Our empirical
findings suggest that very few steps (e.g.., 10-50) are sufficient for
motion generation tasks.

4 MOTION SYNTHESIS
Once trained, A-MDM is able to generate long-horizon motions
with unbounded lengths by auto-regressively sampling from the
diffusion model at each time step. We present four methods for long-
term motion generation: random sampling, task-oriented sampling,
conditional inpainting, and hierarchical control.

Random Sampling: The first method, random sampling involves
sampling from A-MDMwithout imposing any constraints. We show
that our model is able to generate diverse multi-modal motions
starting from a fixed initial state.

Task-Oriented Sampling: Task-oriented sampling involves gener-
ating future states through beam search with a user-defined target
score function. Several randomly sampled candidates trajectories are
generated and evaluated by the score function, and the first frame
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from the best trajectory is selected as the next frame. This task-
oriented sampling approach enables A-MDM to perform tasks, such
as goal-reaching, without requiring further training. However, it is
essential to note that task-oriented sampling often introduces unpre-
dictable behaviors, as also observed in prior work [Ling et al. 2020],
where sub-optimal behaviors such as running in circles around a
goal may arise. It also lacks support for the user to specify precise
fine-grained constraints, beyond defining how the target score is
calculated.

Conditional Inpainting: The third method employs inpainting
techniques to generate motions that adhere to user specifications.
This technique has been highly effective for image synthesis [Lug-
mayr et al. 2022], and space-time motion models [Tevet et al. 2023].
With inpainting, users can specify trajectories and positions for
various joints in the character’s body, and A-MDM is then used to
generate a plausible full-body motion that adheres to those con-
straints.

Hierarchical Control: Finally, we show that A-MDM can also be
incorporated into a hierarchical reinforcement learning framework
to train task-specific high-level controllers on top of the base A-
MDM model. This enables our framework to create controllers for
accomplishing new tasks, while producing higher motion quality
and robustness compared to task-oriented sampling and inpainting.

4.1 Synthesis via Random Sampling
Given the initial character state, our A-MDM can generate plausible
motions for future frames by sampling auto-regressively from the
diffusion model, enabling the generation of diverse long-horizon
motion sequences in real time. The diverse trajectories of synthe-
sized motion from different initial states are shown in Figure 3.
Our supplementary video also demonstrates the capability of our
A-MDM to transition from a stationary pose to diverse behaviors,
such as walking, running, and jumping. When presented with differ-
ent initial states, A-MDM is capable of producing motions that are
consistent with the initial state. For instance, it can generate hop-
ping motions when initialized with a hopping pose. These instances
showcase the model’s ability to learn the distribution of plausible
motions associated with specific states. Our supplementary video
offers additional examples, providing a comprehensive showcase of
the diverse motions that can be generated by A-MDM.

4.2 Synthesis via Task Oriented Sampling
Random sampling alone cannot generate motions that conform
to user commands. Therefore, following the sampling-based con-
trol method presented by Ling et al. [2020], we implement a task-
oriented sampling technique to generate motions that follow a user-
defined tasks. First, a pool of 𝑃 random candidate trajectories are
generated by sampling from A-MDM. The candidates are ranked
according to a user-defined score function. For example, in the goal-
reaching task, the score function is determined by the 2D Euclidean
distance on the ground plane between the character and goal. Then
the candidate trajectory with the best score is selected and its first
frame is used as the character’s next state. This process is repeated
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Fig. 4. Inpainting can generate seamless motion transitions between user-
specified motions and arbitrary character states. We introduce a series
of buffer frames where inpainting stops at an early diffusion step. While
playing out the user-imposed target motion, inpainting is done until the
last denoising step.
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Fig. 5. Transition In-betweening through inpainting. To generate
smoother transitions, we initialize the denoising process using the target
frame at different denoising steps. As the frames approach the time of the
target frame, the denoising process is initialized at a later and later denois-
ing step with the target frame, which leads the generated frames to more
closely conform to the target frame.

for every frame until the task is completed or terminated by other
constraints.
We find that the task-oriented sampling works well for simple

locomotion tasks, such as target reaching (as shown in Section 6.1).
Figure 10 illustrates trajectories of sampled motion for this task.
Compared to Motion VAE [Ling et al. 2020], our method can often
successfully navigate to the target motion directly, rather than pro-
ducing less efficient circling motions. However, for more precision-
oriented tasks such as joystick and path following, task-oriented
sampling can still struggle to closely follow the specified commands.

4.3 Synthesis via Conditional Inpainting

For tasks that require more precise control of the generated mo-
tions, task-oriented sampling may not be able to closely follow a
user’s specifications. To enable more fine-grain control, we show
that A-MDM is also amenable to diffusion model-based inpainting,
as shown in Figure 4. This approach enables A-MDM to be used for
a wide range of tasks without requiring further fine-tuning of the
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model. When applying inpainting to A-MDM, the user first specifies
desired features 𝑥 𝑓 for the motion at each frame 𝑓 , along with a
binary mask𝑚𝑓 that records which features are explicitly specified
by the user. Each entry in𝑚𝑓 is assigned a value of 1 if the feature
is specified by the user, and 0 if the feature was not assigned spe-
cific values by the user. To incorporate the user’s control into the
denoising process, the values of features 𝑥𝑡

𝑓
after each denoising

step is directly replaced with the values specified by the user,

𝑥𝑡
𝑓
= (1 −𝑚𝑓 ) ⊙ 𝑥𝑡𝑓 +𝑚𝑓 ⊙ 𝑥𝑡

𝑓
, 𝑥𝑡

𝑓
∼ 𝑞

(
𝑥𝑡
𝑓

���𝑥𝑡−1
𝑓

)
, (4)

where ⊙ denotes a component-wise multiplication. The resulting
frame 𝑥𝑡

𝑓
is then used as the input to the next denoising step. This

simple inpainting method then enables A-MDM to produce coherent
full body motions that precisely follow controls from the user as
shown in Figure 7. For example, the user can specify trajectories for
various joints, such as the root, and A-MDM can then generate a
plausible full body motion that follows the desired trajectory. We
refer to this form of inpainting as spatial inpainting.
In addition to spatial inpainting, where a full-body motion is

generated from a user-specified trajectory for a subset of the joints,
A-MDM can also be used for temporal inpainting, more commonly
referred to as keyframe inbetweening. For keyframe inbetweening,
the user specifies target key frames 𝑥 𝑓 at a sparse number of frames,
where each keyframe specifies values for the full state of the char-
acter. The goal then is to generate a natural motion for the interme-
diate frames between two adjacent keyframes. We propose a simple
method to generate natural transitions between two keyframes us-
ing A-MDM by simply initializing the denoising process with the
target keyframe starting at different denoising steps. Given an initial
frame 𝑥0 and a target keyframe 𝑥𝑁 at frame 𝑁 , the target keyframe
is gradually introduced into the denoising process by first initializ-
ing the denoising process at frame 𝑓 with the target keyframe 𝑥𝑁
an then applying the denoising process starting at diffusion step 𝑡0,

𝑡0 =

(
1 − 𝑓

𝑁

)
𝑡max, (5)

where 𝑡max is the maximum number of diffusion steps for each
denoising process. For early frames 𝑓 ≈ 0 in the inbetweening
process, 𝑥𝑁 is used to initialize the early denoising steps 𝑡 ≈ 𝑡max,
and many denoising steps are then applied, which allows the model
flexibility to deviate from the keyframe as needed to generate a
more natural motion at the early frames. As the frames get closer
to the keyframe at 𝑓 = 𝑁 , fewer and fewer denoising steps are
applied to 𝑥𝑁 , which enforces that the later frames closely match
the desired keyframe, as shown in Figure 5. In our experiments,
we show that this simple inbetweening method allows A-MDM to
produce realistic motions between keyframes, as well as generate
natural transitions between disparate motion clips. An example of
the motion inbetweening is shown in Figure 6, and more examples
are available in the supplementary video.

5 HIERARCHICAL CONTROL
To address the limitation of task-oriented sampling and inpaint-
ing, we propose using hierarchical reinforcement learning to train
high-level controllers that steer the base A-MDM model towards

Fig. 6. A-MDM can be used for key-frame in-betweening to generate plau-
sible motions (blue) between user specified key-frames (white).

Fig. 7. Joint position control through inpainting. Given desired tra-
jectories for the head and root, A-MDM is able to synthesize high-quality
motions via inpainting techniques without additional finetuning.

producing motions that follow the user’s commands. Once the high-
level controller is trained, the proposed approach demonstrates
significantly more effective performance on new tasks compared
to the sampling-based techniques. Furthermore, we show that this
approach offers greater flexibility when completing the same tasks
than conditional inpainting, as shown in Figure 13.

5.1 Reinforcement Learning
Reinforcement Learning (DRL) is used to train task-specific poli-
cies for directing the low-level A-MDM model towards completing
new tasks. With reinforcement learning, policies are trained by
optimizing a policy’s expected return:

𝐽𝑅𝐿 (𝜋) = E𝜏∼𝑝 (𝜏 |𝜋 )

∞∑︁
𝑓 =0

𝛾 𝑓 𝑟 (𝑠𝑓 , 𝑎𝑓 )
 , (6)

where 𝑝 (𝜏 |𝜋) is the distribution of trajectories 𝜏 induced by a policy
𝜋 , 𝑟 (𝑠𝑓 , 𝑎𝑓 ) is the reward that defines a desired task, and 𝛾 ∈ [0, 1]
is a discount factor. The agent receives a reward at each timestep
𝑓 by executing an action 𝑎𝑓 at state 𝑠𝑓 . We optimize this objective
using Proximal Policy Optimization (PPO) [Schulman et al. 2017]
to train task-specific high-level controllers for each task. Noted
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Fig. 8. Hierarchical Control for A-MDM. The high-level controller predicts
the residual vectors 𝑎𝑡

𝑓
of 𝑥𝑡

𝑓
to steer the denoising process of the base

A-MDM.

we use 𝑓 to represent the MDP timestep to distinguish it from the
diffusion timestep 𝑡 . At each frame 𝑓 , the agent takes as input the
observation of the current state 𝑠𝑓 of the environment, and then
selects an action that is used to steer the sampling procedure of the
pretrained A-MDM.

5.2 Hierarchical Control for A-MDM
In previous VAE-based models [Ling et al. 2020; Won et al. 2022;
Yao et al. 2022], a base VAE model is trained to produce a latent
space that can be directly used to sample motions for the next frame.
Hierarchical controllers are then trained to sample latent codes
from the latent manifold of the base VAE model. In contrast, it’s not
straightforward to train a hierarchical controller to control diffusion
model, where Gaussian noises is introduced iteratively during infer-
ence. To apply a pre-trained A-MDM model to new tasks, we train
task-specific high-level controllers to steer the denoising process to
produce motions that satisfy desired task objectives. Figure 8 pro-
vides a schematic illustration of our hierarchical controller. Given
the character’s current state 𝑥 𝑓 , the high-level controller predicts an
action 𝑎𝑓 = {𝑎𝑇

𝑓
, .., 𝑎1

𝑓
}, which consists of multiple residual vectors

for different denoising steps. Each residual vector 𝑎𝑡
𝑓
is applied as a

perturbation to the output of a denoising step 𝑡 ,

𝑥𝑡
𝑓 +1 = 𝑥𝑡

𝑓 +1 +𝑤
𝑡𝑎𝑡
𝑓
. (7)

The perturbed output 𝑥𝑡
𝑓 +1 is then used as the input for the next

denoising step 𝑡 − 1. 𝑤𝑡 is a weight that anneals the perturbation
according to the denoising step. The annealing schedule is designed
to gradually attenuate towards the end of the denoising steps to
prevent sudden changes. This annealing is crucial since large per-
turbations from the high-level controller at the later denoising steps
can lead to motion artifacts.

6 TASKS

To evaluate the effectiveness of our hierarchical model, we eval-
uate our framework through three tasks: Target Reaching (Sec-
tion 6.1), Joystick Control (Section 6.2), and Path Following (Sec-
tion 6.3).

6.1 Target Reaching
Target reaching is a locomotion task in which the character is
required to move towards a user-designated target location. The
location of the target can be altered by the user at any time within
an episode.

The task is completed if the character’s hip joint is within 15 𝑐𝑚
of the target. Once the character has reached a target, a new target is
randomly placed within a 20m×20m region around the character’s
current location. The task observation of the high-level controller
consists of the target position 𝐺∗ relative to the character.

The reward is computed using a combination of a distance reward
between the character’s position and 𝐺∗, as well as the progress
made towards 𝐺∗. When the agent reaches the goal, the agent will
also receive a one-time bonus reward before a new target is set.

6.2 Joystick Control
The Joystick Control task allows the user to specify the speed and
orientation of the character. The character is trained to generate
natural motions that follow the user specified velocity and heading.
To train the high-level controller for this task, random joystick com-
mands are generated by changing the desired direction and speed
every 120 and 240 frames respectively. The task observation con-
sists of the facing direction 𝑑𝑔𝑟 , which is uniformly sampled between
0 and 2𝜋 , as well as the desired velocity 𝑑𝑔𝑣 , which is uniformly
sampled from 0.6m/s to 7.2m/s. The reward function is given by

𝑟 = 𝑒𝑐𝑜𝑠 (𝑑𝑟 −𝑑
𝑔
𝑟 )−1 × 𝑒−|𝑑𝑣−𝑑

𝑔
𝑣 | , (8)

where 𝑑𝑟 is the character’s angular velocity, and 𝑑𝑣 is the character’s
planar linear velocity. To ensure that the policy satisfies both of
these objectives simultaneously, the two rewards are combined
multiplicatively.

6.3 Path Following
In the Path Following task, the character is required to navigate
along a user-defined path composed of several waypoints. The char-
acter must reach each waypoint in the specified order. The task
observation consists of the locations of the future waypoints along
the pre-defined path. During training, paths are procedurally gen-
erated by randomly sampling linear and angular accelerations for
each waypoint along the path. Once trained, the controller is able
to follow arbitrary paths at runtime. Figure 13 shows examples
of our hierarchical controller following user-specified trajectories.
The base A-MDM model enables the character to follow the target
trajectories with natural behaviors.

7 EXPERIMENTS
In this section, we demonstrate the effectiveness of our A-MDM
framework. First, we evaluate the base A-MDM model and compare
it with prior VAE-based models (e.g., MVAE and HuMoR [Ling et al.
2020; Rempe et al. 2021]) to showcase the effectiveness of our design
choices for motion modeling. We then show that A-MDM can be
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Table 1. Comparisons on AMASS, 100STYLE and LaFAN1. 50 motion sequences are generated starting at fixed initial states. Each motion is 60 frames long
when evaluating ADE and 150 frames long for calculating APD. (unit: cm).

APD ↑ ADE ↓ FDE ↓ FS ↓ Bone.Err ↓ Jnt.Accel→ Pen.Freq ↓ Pen.Dist ↓
AMASS - - - - - 7.28 - -
MVAE 40.97±3.97 24.42±1.04 42.22±3.64 1.44±0.12 0.98±0.12 7.54 ±0.51 1.94±0.56% 1.26±0.82
HuMoR 44.95±4.49 17.96±1.17 41.10±3.98 1.35±0.11 1.04±0.07 7.69±0.49 1.78±0.62% 1.17±0.93
AMDM (Ours) 61.08±1.35 10.40±0.66 21.12±1.16 1.06±0.11 0.82±0.04 7.26±0.19 0.4±0.03% 1.07±0.32
100STYLE - - - - - 9.87 - -
MVAE 58.44±1.36 23.47±0.42 48.24±1.52 1.62±0.05 0.25±0.02 9.48±0.52 1.87±0.84% 0.06±0.02
HuMoR 68.25±1.45 17.41±0.47 43.34±1.74 1.57±0.06 0.23±0.02 9.59±0.48 1.80±0.92% 0.07±0.04
AMDM (Ours) 102.52±1.17 10.36±0.22 24.58±0.06 1.53±0.02 0.19±0.01 9.37±0.28 1.56±0.24 0.04±0.01
LaFAN1 - - - - - 12.56 - -
MVAE 110.48 ±5.67 35.50±3.43 82.93±4.8 2.42±0.49 0.66±0.02 12.81±0.37 0.83±0.09% 0.65±0.14
HuMoR 132.76±4.25 24.35±2.19 41.61±2.97 2.20±0.26 0.53±0.03 13.03±1.19 0.71±0.03% 0.50±0.06
AMDM (Ours) 134.92±6.01 14.22±2.20 34.53±4.16 2.10±0.56 0.54±0.02 12.74±0.35 0.76±0.07% 0.49±0.12

combined with hierarchical RL to solve downstream motion control
tasks.

7.1 Experimental Setup
Our framework is implemented with Pytorch. The experiments with
hierarchical controllers are conducted using OpenAI Gym [Brock-
man et al. 2016]. All experiments are performed on a PC with an
NVIDIA GeForce 4090 GPU and Intel Core i9-13900K.

7.2 Dataset
Our framework is evaluated on three datasets that vary in terms of
size and motion diversity:

(1) 100STYLE contains more than 4,000,000 frames of motion
capture data of 100 diverse styles of locomotion [Mason et al.
2022]. For each style, the dataset consists of motions with
different velocities (idle, running, and walking), and different
headings (sidewalk, forward, and backward). For evaluation,
we partition the data according to the official training and
testing splits.

(2) AMASS is a large-scale motion capture database, represented
with a unified SMPL body model [Mahmood et al. 2019]. We
evaluate our model on this dataset to show that A-MDM
can be effectively applied to large dataset and produce better
performance than prior auto-regressive models.

(3) LaFAN1 is a high-quality motion capture dataset contain-
ing highly dynamicmotions, including dancing, crawling, and
fast locomotions, with a size ofmore than 400,000 frames [Har-
vey et al. 2020]. We train our model with a subset of the
original LaFAN1 dataset, excluding environment interaction
motions.

All motion clips are standardized to a frame rate of 30 Hz.

7.3 Evaluation Metrics
To evaluate the quality of the generated motion, we generate 50
motion sequences from each model, where each motion is initialized
in fixed initial states. Each motion has a length of 150 frames. To
quantify the diversity among these generated motions, we measure

the Average Pairwise Distance (APD):

APD(𝑥𝑖 ...𝑥𝐾 ) =
1

𝐾 (𝐾 − 1)

𝐾∑︁
𝑖=1

𝐾∑︁
𝑗≠𝑖

| |𝑥𝑖 − 𝑥 𝑗 | |, (9)

where 𝐾 is the total number of sequences, and 𝑥𝑖 denotes one of the
generated motion. A large APD indicates the model can generate
diverse motions. However, a limitation of this metric is its tendency
to favour models that generate motions with faster velocities, which
are more likely to lead to larger joint position differences.

To evaluate the similarity of the generated motion with respect to
the original motion data, we calculated the Average Displacement
Error (ADE) on the first 60 frames of the same 50 generated motions:

ADE(𝑥𝑖 ...𝑥𝐾 , 𝑥𝑟𝑒 𝑓 ) = min
𝑖∈𝐾

| |𝑥𝑖 − 𝑥𝑟𝑒 𝑓 | |, (10)

where 𝐾 is the total number of clips, and 𝑥𝑖 is the 𝑖-th clip of the
generated motions, 𝑥𝑟𝑒 𝑓 represents the ground truth motion that
shared the initial state with the generated motions. ADE quantifies
the distance between the distribution of generated motions and the
motion data.
To evaluate how close the endpoint of the predicted motion is

to endpoint of the ground-truth motion, we calculate the Final
Displacement Error (FDE). FDE measures the distance between the
joint positions of the generated motion to the ground-truth motion
with a prediction horizon of 60 frames. 50 different motions are
generated using A-MDM, and the FDE is recorded using the closest
sample from the ground-truth trajectory. FDE provides an additional
evaluation metric to assess the similiarity between the distribution
of generated motions and the ground truth data.

However, APD and ADE alone are not sufficient for a comprehen-
sive evaluation of motion quality. A model can produce a motion se-
quence with notable artifacts, such as deformation, and still achieve
high APD and acceptable ADE scores. To address this issue, we
leverage the assumption that the character’s bones are rigid bodies.
This allows us to gauge the extent of deformation by comparing
the bone lengths in generated motions against those in the ground
truth mocap data. Specifically, we calculate the average deviation
of bone lengths in the generated joint positions from those of a
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Table 2. To evaluate the models’ generalization capabilities when generating new motions not in the dataset, we use the models to generate continuation
motions starting at the last frame of motion clips in the dataset. We compare the models on the AMASS, 100STYLE, and LaFAN1 datasets. (unit: cm).

APD ↑ FS ↓ Bone.Err ↓ Pen.Freq↓ Pen.Dist↓
AMASS

MVAE 41.27±4.06 1.52±0.14 2.96±0.42 2.07±0.89% 1.14±0.73
HuMoR 43.26±5.77 1.47±0.16 3.05±0.35 1.89±1.07% 1.01± 0.91
AMDM (Ours) 59.91±1.03 1.10±0.14 2.01±0.06 0.38±0.05% 0.89± 0.22
100STYLE
MVAE 59.44±0.94 1.66±0.05 0.26±0.02 1.78±0.85% 0.06± 0.04
HuMoR 67.83±0.82 1.64±0.05 0.23±0.02 1.86±0.95% 0.04± 0.03
AMDM (Ours) 109.11±0.07 1.56±0.02 0.20±0.02 1.70±0.38% 0.03±0.01
LaFAN1
MVAE 96.26±16.40 2.15±0.47 0.57±0.20 1.01±0.46% 0.33±0.17
HuMoR 123.78±8.64 2.07±0.05 0.43±0.05 1.07±0.24% 0.46±0.21
AMDM (Ours) 124.46±12.69 1.94±0.01 0.45±0.16 0.86±0.08% 0.30±0.03

standard skeleton. We refer to this measure as the “Bone Length
Error”. Through empirical analysis, we have found that this metric
is well correlated with motion quality and robustness of the motion
synthesis model. Bone Length Error is computed according to:

Bone_Err =
1
𝐵

∑︁
𝑏∈𝐵

| |�̂�𝑏 − 𝐿𝑏 | |, (11)

where 𝐵 represents the number of bones in the character’s body. 𝐿𝑏
denotes the length of a bone estimated from the joint positions of
the generated motions, and 𝐿𝑏 is the ground truth bone length from
the dataset.
We additionally record the occurrence of common artifacts in

motion synthesis, such as foot penetration frequency (Pen.Freq),
average foot penetration distance (Pen.Dist), foot sliding (FS), and
joint acceleration (Jnt.Accel). We follow the implementation of Ling
et al. [2020] to evaluate foot sliding. For evaluating foot penetration,
we adopt the methodology outlined from Rempe et al. [2021].

7.3.1 Random Sampling. In this experiment, we benchmark A-
MDM against previous auto-regressive motionmodels in the context
of random synthesis, as outlined in Section 7.3. This comparison is
conducted using AMASS, 100STYLE, and our subset of the LaFAN1
datasets. For the evaluation presented in Table 1, initial states are
uniformly sampled from each dataset. To evaluate the models’ abil-
ity to generalize and generate motions not in the original dataset,
we introduce an evaluation scheme, termed “Motion Continuation”,
which assesses a model’s ability to extend a ground truth motion
sequence. In this setting, initial states are extracted from the last 30
frames of the mocap clips, and the model then generates a motion
that extends beyond the end of the original motion clip. The results
of this assessment are documented in Table 2. In general, A-MDM
is capable of generating motions with greater diversity and higher
fidelity compared to other auto-regressive generative models.

7.3.2 Denoising Steps and Inference Time. Next, we investigate the
influence of different diffusion steps during inference. The perfor-
mance of A-MDM trained with different number of denoising steps
are summarized in Tables 3 and 4. We observe that models trained

on larger datasets tend to require a greater number of steps to
reach optimal performance. Given A-MDM’s primary objective is
for real-time motion synthesis, it is crucial to strike a balance be-
tween computational efficiency and motion quality. Through our
experiments on 100STYLE, we find that 40 denoising steps offers an
effective trade-off between reducing motion artifacts and preserv-
ing motion diversity. As result, this 40-step configuration is used in
subsequent experiments.

Table 3. Comparison of A-MDM with different number of diffusion steps
on 100STYLE. (unit:cm)

Step APD ↑ ADE ↓ Time(s) ↓ FS ↓
10 96.70 10.44 0.009 1.55
20 101.17 10.16 0.012 1.57
30 101.19 10.31 0.015 1.55
40 102.52 10.36 0.021 1.53
50 100.97 10.36 0.026 1.53

Table 4. Comparison of A-MDM with different numbers of diffusion steps
on the full LaFAN1, excluding environment interaction motions. Distance
error units are measured in cm.

Step APD ↑ ADE ↓ Time(ms) ↓ FS ↓
1 53.12 25.05 0.55 1.60
2 100.43 19.00 1.08 1.72
5 111.78 17.96 2.80 2.06
10 118.93 16.91 5.31 2.02
25 130.34 18.66 12.95 2.11
40 128.91 18.01 20.96 2.22
50 129.32 18.11 26.28 2.15
100 130.28 16.18 52.78 2.06

Our findings show that the models with the fewest denoising
steps exhibits the lowest motion diversity, yet they tend to exhibit
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Fig. 9. Qualitative results for Motion In-betweening via inpainting. Red represents the target frame, and blue indicates the inbtweening frames. We
use a 40-step A-MDM to generate the transition between the same initial frame and different target frames. A-MDM is able to generate natural transitions
between keyframes in real-time.

(a) HuMoR (b) A-MDM

Fig. 10. Task-oriented sampling using HuMoR (Left) vs. A-MDM (Right).
The trajectories of A-MDM are more direct and take fewer steps. Results
are generated using models trained on 100STYLE.

less foot sliding. Fewer denoising steps are more susceptible to
mode-collapse, leading to models that predominantly generates
simpler motions like standing and walking, which are less prone to
producing artifacts such as bone length distortion or foot sliding.
Please refer to our supplementary video for a qualitative comparison
of models with different numbers of denoising steps.
With a larger number of denoising steps, the model exhibits a

higher Average Pairwise Distance (APD), indicating an increase in
the model’s capability to synthesize diverse and complex motions.
However, the improvements from increasing the number of denois-
ing steps begin to attenuate, and inference speed takes precedence
over further increases in denoising steps.

7.3.3 Task Oriented Sampling. In this section, we present a com-
parison of the performance of the VAE-based models and A-MDM
on the target-reaching task using task-oriented sampling. We con-
ducted five trials for each base model, as depicted in different colors
in Figure 10. At each step, the base model generates 100 candidate

successor states through random sampling, and the candidate state
with the shortest distance to the target is selected as the next frame.

For this experiment, we initialize the character in a fixed pose
at the origin (black dots) and set the target at position (-5m, 5m)
(black stars) as show in Figure 10. We compare A-MDM with a
HuMor model trained on the 100STYLE dataset [Mason et al. 2022].
In Figure 10, the trajectories generated by HuMor are consistent
with the findings from Ling et al. [2020], where VAE-based methods
tend to wander instead of taking the most direct path to the target,
especially when they are close to the target. In contrast, A-MDM is
able to followmore direct paths toward the target. This improvement
may be attributed to more diverse motions when sampling from
A-MDM, thereby providing the character with more flexible options,
leading to significantly faster task completion. However, due to its
inherent short-sightedness, Task Oriented Sampling often fails to
identify the optimal behavior for completing a task. While task-
oriented sampling is a useful tool for evaluating auto-regressive
motion synthesis models, it may not always yield the best results in
practice. In the upcoming experiments, we will explore strategies to
leverage the base A-MDMmodel more effectively to further enhance
performance on downstream tasks.

7.4 Hierarchical Control
To evaluate the effectiveness of hierarchical control using differ-
ent auto-regressive models, we compare the learning curve when
training high-level controllers for new tasks. The base model for
each method are trained on the same dataset. For the MVAE, the
hierarchical controller’s training adheres to Ling et al. [2020]. In
the case of HuMoR, the hierarchical controller is trained to predict
the residual latent of the output of the prior network. For A-MDM,
the training of its hierarchical controller follows the procedures
detailed in the Section 5. Figure 11 compares the learning curves of
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(a) LaFAN1 (b) 100STYLE

Fig. 11. Learning Curve of Target Reaching Hierarchical Controllers. A-
MDM achieves higher returns on new tasks compared to the other hierar-
chical models.

(a) Target set 1 (short distance) (b) Target set 2 (longer distance)

Fig. 12. Trajectories for Target Reaching with Hierarchical Control.
The stars stand for a fixed set of targets and lines of various colors represent
different runs starting from the same initial character state. We show that
our hierarchical model is capable of generating diverse motions, with the
same initial state and target goals.

the various models. A-MDM is able to achieve consistently higher
returns compared to the other methods.
One of the features of the design of our hierarchical controller

is that it can preserve the diversity of A-MDM, which allows the
hierarchical model to produce a variety of different motions for
performing the same task, as illustrated in Figure 12. This is in-
contrast to the hierarchical models proposed by Ling et al. [2020],
which selects deterministic latents for steering the base model and
therefore results in deterministic motions that sacrifice much of the
diversty of the original base model. This experiment shows that our
method can produce diverse motions while being controlled by a
hierarchical controller for new tasks.

7.5 Hierarchical Control vs Inpainting
Hierarchical Control and Inpainting are able to perform identical
tasks. As shown in Figure 13, with inpainting, the generated motion
is restricted to exactly follow the user-specified trajectory. There-
fore, if the target trajectory is unnatural, this can lead to unnatural
full-body motions. With hierarchical control, the generated motion
has more flexibility to deviate from the specific target trajectory as
needed to produce more natural behaviors at the cost of not follow-
ing the target trajectory exactly. More examples are available in the
supplementary video.

(a) Comparison between Inpainting and Hierarchical Control in trajectory following

(b) Inpainting (c) Hierarchical Control

Fig. 13. Character trajectory (in white) from inpainting (b) and hierarchical
control(c) when following a user-specified circular trajectory (in red). The
trajectory of inpainting matches user’s target trajectory exactly, while the
hierarchical controller can deviate from the target trajectory as needed in
order to produce more natural motions.

7.6 A-MDM vs Space-time Diffusion Models
Recent systems that apply diffusion models to motion synthesis
have primarily focused on training space-time models for the con-
ditional synthesis of motion sequences [Karunratanakul et al. 2023;
Tevet et al. 2023; Zhang et al. 2022]. This section highlights the key
differences between A-MDM and space-time models. We start by
comparing the performance of selected auto-regressive models and
diffusion-based space-time models. In this experiment, we train our
model with features provided by the data preprocessing pipeline of
HumanML3D[Guo et al. 2022]. We generally follow the evaluation
pipeline of the main experiment of MDM[Tevet et al. 2023] on Hu-
manML3D. We measure Frechet Inception Distance (FID), diversity,
and additionally foot skating ratio as in Guided Motion Diffusion
(GMD) [Karunratanakul et al. 2023].

FID measures the difference between the distribution of the gen-
erated motion and that of the ground truth in learned latent space
from a pre-trained motion model. Diversity computes the average
distance of generated motions in latent space.

During the evaluation, motions are generated with a fixed length
of 196 frames for both auto-regressive and space-time models. Since
auto-regressive models require an initial frame, we randomly sam-
ple this frame from the motion dataset. For space-time models, we
sample motions unconditionally. The key difference between our
evaluation and those conducted in the research of space-time mod-
els is that we emphasize the quality of unconditional generation, as
opposed to text-conditioned generation. As demonstrated in Table5,
A-MDM demonstrates the best performance among auto-regressive
models. However, space-time models still demonstrate stronger per-
formance across the metrics. This difference may be due to A-MDM
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using a smaller number of diffusion steps than space-time mod-
els, and simpler network structures (MLP) for real-time synthesis).
These factors result in significantly faster inference when evaluated
under the standard DDPM sampling procedure without additional
speedup techniques.

Table 5. Comparison between generative auto-regressive models and space-
time models on HumanML3D [Guo et al. 2022]

Model FID↓ Diversity→ Foot Skat. Ratio↓
Real 0.002±0.00 9.5002 ± 0.002 -

MDM 0.9157 ± 0.0533 9.0123 ± 0.0602 0.0930 ± 0.0021
GMD 0.5727 ± 0.0681 9.1714 ± 0.0789 0.0657±0.0016
MVAE 11.2393± 0.1607 6.1503 ± 0.0601 0.4153 ± 0.0025
HuMoR 8.2444±0.2437 7.7396 ± 0.0643 0.1210 ± 0.0011
Ours 1.7435 ± 0.0813 7.8998 ± 0.0638 0.1010 ± 0.0012

A-MDM and other auto-regressive models are trained to perform
next-frame prediction. It can therefore generate long-horizon mo-
tions even when trained with a dataset that predominantly consists
of short clips. In contrast, space-time models are generally trained
with a maximum motion length, therefore using these models to
generate longer motions is prone to drifting out of distribution from
the training data. Please refer to the supplementary video for a
comparison of this property.

7.7 A-MDM vs Non-Generative Models
To analyze A-MDM’s capability to model diverse and highly dy-
namic motions, we compare our model with a non-generative auto-
regressive model, Neural State Machine (NSM)[Starke et al. 2019].
We first evaluate the architecture and the general design between A-
MDM and NSM by comparing the performance in an unconditional
synthesis setting. For the sake of a fair comparison, we directly
use the same network as NSM and use phase information as the
input for the gate network, which predicts the blending weights
to the MoE framework. Additionally, we predict the phase value
for the next time step in this model, as in NSM. We then train it
on the same LaFAN1 dataset (without files concerning obstacles)
as A-MDM. We compare the performance between A-MDM with
NSM in Table 6. We found that our A-MDM effectively generates
diverse motions with fewer artifacts than NSM. Results are available
in the supplementary video. The difference in motion quality is
particularly evident during a transition from a walk to a quick turn.

Table 6. Comparison between NSM and A-MDM. (unit: cm).

Model FS↓ Pen.Freq↓ Pen.Dist↓
GT 1.58 0.79 % 0.05
NSM 2.25 0.87 % 0.07
Ours 1.99 0.82 % 0.04

8 DISCUSSION AND FUTURE WORK
In this work, we presented an auto-regressive diffusion model for
kinematic motion synthesis. Unlike recent diffusion models for
motion synthesis, which use space-models to generate motion se-
quences, we demonstrate that an auto-regressive diffusionmodel can
synthesize high-quality and diverse motions, and can be effectively
trained on large motion datasets. To achieve real-time inference, we
propose a lightweight architecture and use significantly fewer steps
than conventional diffusion models. Once trained, A-MDM can be
combined with a variety of different control methods to generate
motions for new downstream tasks.

While our designs decisions improve overall stability and motion
quality of A-MDM, training auto-regressive diffusion models for
generate long-horizon motion is still challenging. A-MDM can oc-
casionally exhibit unstable behaviours and failures under extreme
circumstances. For instance, A-MDM is prone to generating motions
that exhibit foot sliding and jittering when the user-specified con-
trols are unnatural. We are interested in exploring techniques that
can further mitigate these artifacts from A-MDM and improve the
robustness of the model across different applications. Our work has
focused primarily on single-frame autoregressive models, but for
some applications it may be beneficial to use multi-frame models,
which predicts a sliding window of frames at a time. This may im-
prove temporal coherence of the generated motions and allow the
model tackle more complex tasks. Recent works have also proposed
a variety of acceleration techniques for motion diffusion models
[Song et al. 2023; Zhang et al. 2023b; Zhou et al. 2023]. Integrat-
ing these methods into A-MDM may further improve the runtime
performance of these models for real-time applications.
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