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Fig. 1. We propose an adversarial multi-objective optimization technique that enables physically simulated characters to closely imitate a broad range of
highly agile and athletic skills, without requiring manual reward engineering. Here, a physically simulated character learns to jump over obstacles by imitating
a double kong reference motion.

Multi-objective optimization problems, which require the simultaneous opti-
mization of multiple objectives, are prevalent across numerous applications.
Existing multi-objective optimization methods often rely on manually-tuned
aggregation functions to formulate a joint optimization objective. The perfor-
mance of such hand-tuned methods is heavily dependent on careful weight
selection, a time-consuming and laborious process. These limitations also
arise in the setting of reinforcement-learning-based motion tracking meth-
ods for physically simulated characters, where intricately crafted reward
functions are typically used to achieve high-fidelity results. Such solutions
not only require domain expertise and significant manual tuning, but also
limit the applicability of the resulting reward function across diverse skills.
To bridge this gap, we present a novel adversarial multi-objective opti-
mization technique that is broadly applicable to a range of multi-objective
reinforcement-learning tasks, including motion tracking. Our proposed Ad-
versarial Differential Discriminator (ADD) receives a single positive sample,
yet is still effective at guiding the optimization process. We demonstrate
that our technique can enable characters to closely replicate a variety of ac-
robatic and agile behaviors, achieving comparable quality to state-of-the-art
motion-tracking methods, without relying on manually-designed reward
functions.
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1 INTRODUCTION
Physics-based character animation has seen rapid progress over
the past several years. Data-driven reinforcement learning methods
have enabled the field to grow from synthesizing controllers for
relatively simple and common behaviors, such as locomotion, to
controllers that can replicate a wide range of highly dynamic and
complex skills. The effectiveness of RL methods is heavily dependent
on the reward function, which tends to require significant manual
effort to design and tune. As an alternative to manual reward en-
gineering, adversarial imitation learning techniques automatically
learn reward functions from data, in the form of an adversarial dis-
criminator. Despite these impressive advances, a gap in quality has
persisted between physically simulated animation and human mo-
tion capture. Prior adversarial imitation learning methods, though
effective at producing natural and life-like behaviors, often diverge
from the exact reference motions they aim to reproduce. Rather than
focusing on precise replication of target motions, these methods
capture the overall style of the motions via a distribution matching
objective. However, closely replicating a target motion can be vital
for many animation applications. In this work, we present a novel
adversarial multi-objective optimization (MOO) technique, which
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can be broadly applied to a wide range of MOO problems. When
applied to motion tracking for character animation, our technique
enables physics-based controllers to accurately mimic challenging
reference motions recorded from human actors, without relying on
manually engineered reward functions.

A commonly used technique for solving MOO problems is the
loss balancing method, which combines multiple objectives into a
scalar function via a weighted sum. Although simple, this approach
heavily relies on careful weight selection, a process that can be time-
consuming and labor-intensive when done manually. To address
this limitation, our technique automatically aggregates multiple
objectives by replacing the traditional weighted sum of objective
functions with an adversarial differential discriminator (ADD). The
discriminator takes as input a vector of objective values, herein re-
ferred to as a differential vector, since the objective values represent
the difference between the performance of a model and the ideal
performance for each objective. During training, the discriminator
learns to classify whether a given differential vector corresponds
to an ideal solution or not. This design enables the discriminator
to automatically and dynamically determine how to balance the
various objectives over the course of training, automatically hon-
ing in on more challenging objectives as the model’s performance
improves. Furthermore, with our formulation, the only positive sam-
ple provided to the discriminator is a zero vector representing the
differential vector of an ideal “zero-error” solution. A key finding of
this work is that a discriminator trained with only a single positive
sample remains effective in guiding the optimization process.

The central contribution of this paper is a novel GAN-based frame-
work for multi-objective optimization. Our framework provides an
automatic and dynamic way to aggregate different objectives in
MOO problems. Furthermore, unlike the traditional loss weighting
approach, our framework can capture potential nonlinear relation-
ships among the objectives. We demonstrate that our approach
achieves performance comparable to existing methods that use
hand-crafted objective aggregation functions across several MOO
problems, including motion tracking for simulated character and
non-motion-imitation tasks. Our framework successfully enables
a simulated humanoid and a simulated robot to replicate a variety
of highly agile and acrobatic skills, achieving quality on par with
the state-of-the-art motion tracking methods, while alleviating the
need for manual reward engineering.

2 RELATED WORK
Physics-based character animation enables procedural methods that
can automatically synthesize realistic and responsive behaviors
for virtual characters. A key challenge has been developing con-
trollers that can reproduce the vast array of motor skills exhibited
by humans and animals, while also producing life-like movements.
Early efforts leveraged human insight to design skill-specific control
strategies [Coros et al. 2010; Hodgins et al. 1995; Wooten 1998; Yin
et al. 2007]. These manually-designed controllers have been effec-
tive in replicating a large variety of complex motor skills [Al Borno
et al. 2013; Da Silva et al. 2008; Geyer et al. 2003; Mordatch et al.
2012]. However, designing skill-specific controllers often entails a
lengthy development process, which can be difficult to apply to skills

where domain expertise is scarce. Optimization-based methods can
mitigate the reliance on manual engineering [Al Borno et al. 2013;
de Lasa et al. 2010; Mordatch et al. 2012; Naderi et al. 2017; van de
Panne et al. 1994; Wampler et al. 2014], but may nonetheless require
carefully-designed control structures that expose a compact set of
optimization parameters. Furthermore, designing suitable objective
functions that lead to naturalistic behaviors for a particular skill
can present a daunting challenge [Geijtenbeek et al. 2013; Wang
et al. 2009]. A recent line of work explores leveraging large language
models (LLMs) to automate the design of objective functions [Cui
et al. 2025; Ma et al. 2023].

Data-driven methods: Meanwhile, data-driven techniques allevi-
ate some challenges of controller engineering by imitating reference
motion data, such as motion clips acquired through motion capture
or artist-animated keyframes [Sharon and van de Panne 2005; Zor-
dan and Hodgins 2002]. One of the most common approaches for
imitating motion data is via motion tracking, where a controller
imitates a desired behavior by explicitly tracking target poses pre-
scribed by a reference motion clip [Liu et al. 2005, 2010; Sok et al.
2007]. These tracking-based methods can reproduce a wide range
of behaviors without designing skill-specific objectives for every
behavior [Lee et al. 2010; Liu and Hodgins 2018; Liu et al. 2016].
Motion tracking combined with deep reinforcement learning has led
to general frameworks that can imitate diverse motor skills [Peng
et al. 2018], with systems that can reproduce hundreds of distinct
behaviors using the same learning algorithm [Wang et al. 2020; Won
et al. 2020; Yuan et al. 2021]. The vital component to the success
of motion tracking methods lies in designing sufficiently general
tracking objectives that can be applied to a large variety of skills,
while also producing high-quality results for each specific skill [Ma
et al. 2021; Wang et al. 2020]. Constructing general-purpose tracking
objectives can therefore entail a tedious design and tuning process.

Adversarial imitation learning: Adversarial imitation learning and
related inverse reinforcement learning methods provide an alterna-
tive to the manual design of objective functions by jointly learning
an objective function and a corresponding policy from data through
an adversarial mini-max game [Abbeel and Ng 2004; Ziebart et al.
2008]. Adversarial imitation learning can be instantiated through
a GAN-like framework [Goodfellow et al. 2014], where a discrimi-
nator is trained to differentiate between behaviors from a demon-
strator and behaviors produced by an agent. The agent then aims
to learn a policy that produces behaviors that maximize the predic-
tion error of the discriminator [Ho and Ermon 2016]. It has been
shown that this adversarial framework imitates demonstrations
by optimizing a variational approximation of the divergence be-
tween the demonstrations and the agent’s behavior distribution
[Ke et al. 2021; Nowozin et al. 2016]. Peng et al. [2021] leveraged
adversarial imitation learning to train controllers that are able to
imitate task-relevant behaviors from unstructured motion datasets
containing diverse motion clips. These adversarial techniques have
been able to produce high-quality motions that are comparable to
state-of-the-art motion tracking methods [Peng et al. 2022, 2019; Xu
and Karamouzas 2021]. However, prior adversarial imitation learn-
ing methods for motion imitation leverage a general distribution
matching formulation, where an agent is only required to match
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the overall motion distribution of the dataset [Peng et al. 2021; Xu
and Karamouzas 2021]. This provides the agent with the flexibility
to sequence motion transitions and segments in different orders,
potentially dropping modes in the target motion distribution. This
flexibility can be an advantage in certain applications, but it can also
be detrimental in animation applications that require precise repli-
cation of a motion clip, such as in-betweening and post-processing
of keyframe animations.

Multi-objective optimization: MOO problems involve optimizing
multiple objectives simultaneously. A common strategy is to com-
bine the objectives via a weighted sum. However, the effectiveness
of such methods is highly sensitive to the chosen weights, which
entail meticulous manual tuning. Multi-objective evolutionary algo-
rithms can approximate the Pareto front by evolving a population of
solutions [Deb et al. 2002; Xu et al. 2020]. For instance, Agrawal and
van de Panne [2013] adapted (1 + 𝜆) CMA-ES to synthesize jumping
controllers with optimal trade-offs between effort and jump height
[Igel et al. 2007]. However, evolutionary algorithms are computa-
tionally expensive as they need to evaluate and maintain a large
population of solutions. Chen et al. [2019] proposed a more efficient
method that trains a single meta-policy that can be quickly adapted
to different preference vectors. Yet, it requires manual specification
of preferences that can be difficult due to varying objective scales.
Prior work, such as Abdolmaleki et al. [2020] and Xu et al. [2023],
addresses this by introducing scale-invariant multi-critic RL frame-
works, in which each objective is assigned its own critic and a single
policy is jointly optimized over this set of critics. In this work, we
propose an adversarial MOO approach that automatically balances
the different objectives without manual preference specification or
multiple critics. Moreover, our method enables nonlinear combina-
tions of objectives that can better capture complex relationships
among disparate objectives and the potentially non-convex Pareto
front.

3 BACKGROUND
In this work, we propose a multi-objective optimization method
using an adversarial differential discriminator (ADD). To evaluate
its effectiveness, we apply ADD to solve a range of control problems
modeled as MDPs, where an agent aims to optimize multiple ob-
jectives concurrently. An MDP is defined as 𝑀 = (S,A, 𝛾, 𝜌0, 𝜌, 𝑟 ),
with a state space S, action space A, discount factor 𝛾 ∈ [0, 1], ini-
tial state distribution 𝜌0 (s), dynamics function 𝜌 (s′ |s, a), and reward
function 𝑟 . An agent interacts with the environment by sampling an
action from a policy a𝑡 ∼ 𝜋 (a𝑡 |s𝑡 ) at each timestep 𝑡 conditioned
on state s𝑡 . The agent then performs the action, resulting in a new
state s𝑡+1, sampled according to the environment dynamics s𝑡+1 ∼
𝜌 (s𝑡+1 |s𝑡 , a𝑡 ). A trajectory 𝜏 = (s0, a0, s1, a1, ..., s𝑇−1, a𝑇−1, s𝑇 ) con-
sists of a sequence of state s𝑡 ∈ S and action a𝑡 ∈ A pairs. The
goal of the agent is to learn a policy that maximizes the expected
discounted return 𝐽 (𝜋),

𝐽 (𝜋) = E𝑝 (𝜏 |𝜋 )

[
𝑇−1∑︁
𝑡=0

𝛾𝑡𝑟𝑡

]
(1)

where 𝑝 (𝜏 |𝜋) = 𝜌0 (s0)
∏𝑇−1
𝑡=0 𝜌 (s𝑡+1 |s𝑡 , a𝑡 )𝜋 (a𝑡 |s𝑡 ) represents the

likelihood of a trajectory 𝜏 under a policy 𝜋 .

4 ADVERSARIAL DIFFERENTIAL DISCRIMINATOR
In MOO problems, multiple objectives are typically expressed as
loss functions, where the goal is to jointly minimize these losses.
Let 𝑙𝑖 (·) denote the 𝑖-th loss function for 1 ≤ 𝑖 ≤ 𝑛. In the following
discussion, we assume that each loss function is non-negative 𝑙𝑖 (·) ≥
0. A common approach for tackling MOO problems is to aggregate
the individual loss functions using a weighted sum:

min
𝜃

∑︁
𝑖

𝑤𝑖𝑙𝑖 (𝜃 ), (2)

where 𝑤𝑖 denotes the corresponding weight assigned to the 𝑖-th
loss function. The goal of the optimization problem then is to find a
set of model parameters 𝜃 that minimizes this linear combination
of loss functions [Kendall et al. 2017; Liu et al. 2019].

This formulation, however, restricts the aggregation to linear
combinations of the individual objectives. In this work, we propose
constructing a nonlinear aggregation using an adversarial differen-
tial discriminator 𝐷 (Δ), which enables our method to automatically
learn more flexible combinations of the objectives. In our frame-
work, the loss functions 𝑙𝑖 (𝜃 ) are assembled into a differential vector
Δ =

(
𝑙1 (𝜃 ), ..., 𝑙𝑛 (𝜃 )) . The differential vector can be interpreted as

the error, or the difference between the ideal and actual performance,
for each objective. The discriminator 𝐷 (Δ) acts as a nonlinear ag-
gregation function that combines the individual losses in Δ together
into a single aggregate loss. The multiple objectives are then jointly
optimized through an adversarial framework [Goodfellow et al.
2014], which formulates the MOO problem as a mini-max game:

min
𝜃

max
𝐷

log(𝐷 (0)) + log(1 − 𝐷 (Δ)). (3)

A key distinction between ADD and prior adversarial learning frame-
works is that the adversarial differential discriminator 𝐷 only re-
ceives a single positive sample, a zero vector Δ = 0 corresponding to
the differential vector of an ideal solution. One of the key findings
of this work is that an adversarial discriminator trained on a single
positive sample can still be effective at solving a wide range of tasks.

However, simply optimizing Eq. 3 can lead to degenerate behav-
iors, where the discriminator 𝐷 may converge to a delta function
that assigns a score of 1 to the zero differential vector and a score
of 0 to any non-zero differential vector. This delta function can lead
to uninformative gradients, which can impair the optimization pro-
cess. To mitigate this degeneracy, we follow Peng et al. [2021] and
introduce a gradient penalty (GP) regularizer:

min
𝜃

max
𝐷

log(𝐷 (0)) + log(1 − 𝐷 (Δ)) − 𝜆𝐺𝑃L𝐺𝑃 (𝐷), (4)

where the gradient penalty L𝐺𝑃 is given by:

L𝐺𝑃 (𝐷) =
����∇𝜙𝐷 (𝜙)��𝜙=Δ����2

2 . (5)

When training with the objective outlined in Eq. 4, the model adjusts
its parameters 𝜃 to drive Δ closer to zero to fool the discriminator.
Meanwhile, the discriminator dynamically attends to different objec-
tives and hones in on the more difficult combinations of objectives
to continually challenge the model.
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5 MOTION TRACKING WITH ADD
In this section, we show how ADD can be applied in a reinforcement
learning framework to train control policies that enable physically
simulated characters to imitate challenging reference motions. RL-
based motion tracking methods typically use a tracking reward,

𝑟𝑡 =
∑︁
𝑖

𝑤𝑖𝑟 𝑖𝑡 , (6)

composed of a weighted sum of various reward terms 𝑟 𝑖𝑡 . Each
reward term quantifies the error between the agent’s motion and
the reference motion for a specific motion feature [Chentanez et al.
2018; Peng et al. 2018; Wang et al. 2020], such as joint rotations,
root positions, etc. A commonly used formulation for these reward
terms is as an exponentiated error:

𝑟 𝑖𝑡 = exp(−𝛼𝑖 ∥q̂𝑖𝑡 ⊖ q𝑖𝑡 ∥22), (7)

where q𝑖𝑡 denotes a vector of features, such as position or velocities,
extracted from the agent’s state s𝑡 ; q̂𝑖𝑡 are the corresponding target
features specified by the reference motion; and 𝛼𝑖 are manually
specified scale parameters. Manually designing effective reward
functions for precise imitation of a wide range of motions can be
challenging. Moreover, the reward parameters 𝑤𝑖 and 𝛼𝑖 can be
laborious to tune, and may need to be adjusted for different types
of motions.

We propose an adaptive motion tracking reward function that
models motion tracking as an MOO problem and replaces the lin-
ear weighted sum in Eq. 6 with a learned adversarial differential
discriminator. During training, the discriminator 𝐷 (Δ) receives the
difference between the agent’s state s and the reference motion ŝ as
negative samples (i.e., Δ = ŝ ⊖ s). The only positive sample provided
to 𝐷 is Δ = 0, representing perfect tracking with zero tracking error.
The discriminator 𝐷 is trained using the following objective:

max
𝐷

log(𝐷 (0)) + E𝑝 (s |𝜋 ) [log(1 − 𝐷 (Δ))] − 𝜆𝐺𝑃L𝐺𝑃 (𝐷) . (8)

Here, the gradient penalty regularizer is specified according to

L𝐺𝑃 (𝐷) = E𝑝 (s |𝜋 )
[∥∇𝜙𝐷 (𝜙) |𝜙=Δ∥22] , (9)

where 𝑝 (s|𝜋) represents the marginal state distribution under the
policy 𝜋 . In our framework, the gradient penalty is applied to the
negative samples instead of the positive samples, as ADD receives
only one positive training sample. This differs from prior work,
such as Peng et al. [2021], where the gradient penalty is applied
exclusively to the positive samples. The reward for training the
tracking policy 𝜋 is then given by:

𝑟𝑡 = − log(1 − 𝐷 (Δ𝑡 )), (10)

where the differential vector is simply the difference between the
agent’s state and the target state Δ𝑡 = ŝ𝑡 ⊖ s𝑡 .

Previous adversarial imitation learning techniques adopt a distri-
bution matching approach, where the discriminator 𝐷 (𝑠𝑡−𝑛:𝑡 ) clas-
sifies a sequence of 𝑛 states as either reference or policy-generated.
This encourages the policy to produce trajectories that broadly re-
semble the characteristics of the reference motion. In contrast, our
formulation allows for precise frame-level replication, which is es-
sential for applications requiring high accuracy, such as motion
in-betweening or animation keyframe post-processing.

5.1 Discriminator Observations
Following Peng et al. [2021], an observation map 𝜙 (·) extracts fea-
tures from the agent’s state s and the reference motion ŝ. The differ-
ential vector then consists of the differences between the extracted
features Δ𝑡 = 𝜙 (ŝ𝑡 ) ⊖ 𝜙 (s𝑡 ). The observation map 𝜙 (·) extracts a
set of features similarly to those from Peng et al. [2018]:
• Global position and rotation of the root
• Position of each joint represented in the character’s local

coordinate frame
• Global rotation of each joint
• Linear and angular velocity of the root represented in the

character’s local coordinate frame
• Local velocity of each joint

where the character’s local coordinate frame is specified with the
origin located at the root of the character (i.e., pelvis). The x-axis of
the local coordinate frame aligns with the root link’s facing direction,
while the positive y-axis points in the global upward direction.

6 MOTION TRACKING
To evaluate the effectiveness of ADD for motion imitation, we apply
ADD to train a 28 DoF simulated humanoid and a 26 DoF simulated
Sony EVAL robot [Taylor et al. 2021] to imitate a diverse suite of
motion clips. We evaluate ADD on imitating individual motion clips
from Peng et al. [2018], as well as training a single general policy on
larger motion datasets, such as the DanceDB subset of AMASS and
a subset of LaFAN1 [Harvey et al. 2020; Mahmood et al. 2019]. The
LaFAN1 subset is curated by excluding motions involving object and
terrain interactions, which are not simulated in our environments.
The LaFAN1 subset contains over an hour of various locomotion
skills, including jumping, sprinting, fighting, dancing, etc.

6.1 States and Actions
The state s𝑡 is composed of features, similar to those used by Peng
et al. [2021], including the positions of each body link relative to the
root, the rotations of the links encoded in the 6D normal-tangent
representation, as well as the linear and angular velocities of each
link. All features are recorded in the character’s local coordinate
frame. Target poses from the reference motion are also provided to
the policy to synchronize the simulated character with the reference
motion. The policy’s actions a𝑡 specify target rotations for each joint,
which are actuated using PD controllers. Spherical joint targets
are represented using 3D exponential maps [Grassia 1998], while
revolute joints are represented using scalar rotation angles.

6.2 Network Architecture
The policy 𝜋 is modeled with a neural network that maps a given
state s𝑡 to a Gaussian distribution over the actions, 𝜋 (a𝑡 |s𝑡 ) =
N (𝜇 (s𝑡 ), Σ). The covariance matrix Σ is fixed over the course of
training, and it is represented by a diagonal matrix Σ = diag(𝜎1, 𝜎2, ...)
with manually specified values. The input-dependent mean 𝜇 (s𝑡 )
is modeled by a fully connected network with two hidden layers,
consisting of 1024 and 512 ReLU-activated units [Nair and Hinton
2010], followed by a linear output layer. Similar architectures are
adopted for the value function𝑉 (s𝑡 ) and discriminator𝐷 (Δ), except
that their output layers consist of a single linear unit.
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(a) Run (b) Jump

(c) Backflip (d) Crawl

(e) Getup Facedown (f) Spinkick

(g) Climb

(h) LaFAN1: Dance (i) LaFAN1: Spinning Jump
Fig. 2. Snapshots of the simulated humanoid characters trained using ADD performing various skills. ADD enables characters to replicate a diverse repertoire
of behaviors, achieving tracking quality comparable to state-of-the-art motion imitation methods, without manual reward engineering.

(a) Kick (b) Punch

Fig. 3. Visual snapshots of the simulated EVAL robot replicating a range of target motions, using motion-tracking controllers trained with ADD. The controllers,
trained using learned tracking rewards, successfully enable the robot to reproduce a set of challenging skills.

6.3 Training
An overview of the ADD training procedure is outlined in Algo-
rithm 1. Following Peng et al. [2018], the character is initialized to
starting states randomly sampled from the reference motion. At
each timestep 𝑡 , features are extracted from the agent’s state 𝜙 (s𝑡 )
and the target state from the reference motion 𝜙 (ŝ𝑡 ). The difference
Δ𝑡 = 𝜙 (ŝ𝑡 ) ⊖ 𝜙 (s𝑡 ) is then provided as input to the discriminator.
The discriminator 𝐷 (Δ𝑡 ) then outputs a score, which is used to
calculate the reward for the agent according to Eq. 10.

The trajectories collected by the agent are recorded in an experi-
ence buffer B. After a batch of data is collected, mini-batches are
sampled from the buffer to update the discriminator, policy, and
value function. The policy is updated using PPO [Schulman et al.
2017], with advantages computed with GAE(𝜆) [Schulman et al.
2018]. The value function is updated using target values computed
with TD(𝜆) [Sutton and Barto 2018], and the discriminator is updated
according to Eq. 8.
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ALGORITHM 1: ADD Training Procedure for Motion Imitation

1: inputM: a reference motion clip or dataset
2: 𝐷 ← initialize discriminator
3: 𝜋 ← initialize policy
4: 𝑉 ← initialize value function
5: B ← ∅ initialize experience buffer

6: while not done do
7: for trajectory 𝑖 = 1, ...,𝑚 do
8: 𝜏𝑖 ← {(s𝑡 , a𝑡 )𝑇 −1

𝑡=0 , s𝑇 } collect trajectory with 𝜋
9: 𝜏𝑖 ← {(ŝ𝑡 )𝑇𝑡=0} sample reference trajectory fromM

10: for time step 𝑡 = 0, ...,𝑇 − 1 do
11: Δ𝑡 ← 𝜙 (ŝ𝑡 ) ⊖ 𝜙 (s𝑡 )
12: 𝑑𝑡 ← 𝐷 (Δ𝑡 )
13: 𝑟𝑡 ← calculate reward according to Equation 10 using 𝑑𝑡
14: record 𝑟𝑡 in 𝜏𝑖
15: end for
16: store 𝜏𝑖 in B
17: end for

18: for update step = 1, ..., 𝑛 do
19: 𝑏𝜋 ← sample batch of 𝐾 differentials {Δ𝑗 }𝐾𝑗=1 from B
20: update 𝐷 (Equation 8),𝑉 , and 𝜋 using 𝑏𝜋
21: end for
22: end while

6.4 Motion Imitation Results
To benchmark ADD’s motion tracking performance, we compare
ADD against two well-established methods: DeepMimic and AMP
[Peng et al. 2018, 2021]. DeepMimic, designed for precise motion
tracking, relies on a manually-designed imitation reward function
composed of multiple sub-terms,

𝑟DM
𝑡 = 𝑤𝑝𝑟𝑝𝑡 +𝑤 𝑗𝑣𝑟

𝑗 𝑣
𝑡 +𝑤𝑟 𝑣𝑟𝑟 𝑣𝑡 +𝑤𝑒𝑟𝑒𝑡 +𝑤𝑐𝑟𝑐𝑡 . (11)

Each term is an exponentiated error (Eq. 7), with scale 𝛼𝑖 and weight
𝑤𝑖 hyperparameters (see Supplementary B.2 for the full formula-
tion). Additionally, computing the joint pose 𝑟𝑝𝑡 and velocity rewards
𝑟
𝑗𝑣
𝑡 involves joint-specific weights, requiring additional tuning ef-

fort. Similar to ADD, DeepMimic policies receive phase information
in the form of target frames, synchronizing the policy with a given
reference motion. In contrast, AMP adopts an adversarial imitation
learning framework to imitate the general style of a motion dataset,
rather than exact motion tracking. While it is not designed for pre-
cise motion tracking, AMP is included in the comparisons because
ADD builds upon a similar adversarial framework. However, by
adapting AMP’s imitation objective, our approach can change the
learning objective from general style imitation to accurate motion
tracking. Many follow-up works extend DeepMimic and AMP with
architectural innovations orthogonal to the imitation objective [Luo
et al. 2023; Peng et al. 2022; Tessler et al. 2024]. However, our experi-
ments focus on the core imitation objective. Therefore, we compare
our method directly with DeepMimic and AMP. ADD can also be
combined with these additional enhancements in a similar way that
DeepMimic and AMP have been extended.

For a fair comparison across methods, we disable pose termina-
tion used in Peng et al. [2018], which terminates an episode if the

character’s pose deviates significantly from the reference. Pose ter-
mination is not applicable to distribution matching techniques such
as AMP, where the policy is not synchronized with the reference mo-
tion. Early termination is triggered only when the character makes
undesired contact with the ground. The baselines are implemented
based on publicly available code provided and tuned by Peng et al.
[2018, 2021] to ensure reliable comparisons. Motion tracking perfor-
mance is evaluated using the position tracking error 𝑒pos

𝑡 , and DoF
velocity tracking error, which is an indicator of motion smoothness.
𝑒

pos
𝑡 measures the difference in the root position and relative joint

positions between the simulated character and the reference motion:

𝑒
pos
𝑡 =

1
𝑁 joint + 1

( ∑︁
𝑗∈joints

������(x̂𝑗𝑡 − x̂root
𝑡 ) − (x𝑗𝑡 − xroot

𝑡 )
������

2

+
����x̂root
𝑡 − xroot

𝑡

����
2

)
. (12)

Here, x𝑗𝑡 and x̂𝑗𝑡 represent the 3D Cartesian position of joint 𝑗
from the simulated character and the reference motion, respec-
tively. 𝑁 joint denotes the number of joints in the character. Detailed
hyperparameter settings are available in Supplementary B.4.

Figures 2 and 3 showcase behaviors learned by the humanoid
and EVAL robot trained via ADD. The behaviors are best viewed in
the supplementary video. ADD can closely imitate individual mo-
tion clips and larger motion datasets with different embodiments,
successfully reproducing a diverse set of agile and acrobatic skills.
This includes challenging parkour skills, such as Climb and Double
Kong, which require particularly high motion tracking accuracy
to replicate intricate contacts with the environment. A qualitative
comparison of ADD against other methods is available in the sup-
plementary video.

Table 1 and Table 2 summarize quantitative comparisons of the dif-
ferent methods. AMP exhibits poor tracking performance, since the
policies are trained using a general distribution-matching objective.
AMP’s susceptibility to mode collapse also makes it less effective at
tracking larger motion datasets. Both ADD and DeepMimic are able
to accurately track a wide variety of reference motions. However,
there are important distinctions in the robustness of the reward func-
tion and ease of deployment. The reliance on manually-designed
reward functions, to a degree, limits DeepMimic’s ability to effec-
tively imitate a broad spectrum of motions, as it can be challenging
to craft a general and effective reward function that can imitate
a diverse variety of behaviors. For instance, DeepMimic policies
failed to reproduce some of the challenging parkour motions. For
the Double Kong motion, DeepMimic policies fail to jump over the
boxes and learn to simply mimic running in place after tripping. In
contrast, ADD successfully enables characters to clear the obsta-
cles, replicating the jumps and intricate contacts. Policies trained
using DeepMimic also exhibit notable jitteriness when tracking
the DanceDB dataset, whereas ADD consistently produces smooth
behaviors across diverse motions, as indicated by its lower DoF
velocity tracking errors. Additional reward tuning, especially for
DanceDB, may further improve DeepMimic’s performance. But by
automatically learning to balance different objectives instead of
relying on fixed manually-specified parameters, ADD offers a more
general and adaptive approach for imitating more diverse motions.
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Table 1. Motion tracking performance of simulated humanoid characters trained using AMP [Peng et al. 2021], DeepMimic [Peng et al. 2018], and our method
ADD. Position (Eq. 12) and DoF Velocity tracking errors are averaged ± 1 std across 5 models initialized with random seeds. Due to computational constraints,
1 model is trained for the LaFAN1 subset. For each model, errors are averaged across 4096 test episodes. ADD achieves tracking performance comparable to
DeepMimic when imitating individual motion clips and larger motion datasets, while alleviating the need for manual reward engineering.

Skill Length (s) Position Tracking Error [m] DoF Velocity Tracking Error [rad/s]
AMP DeepMimic ADD (ours) AMP DeepMimic ADD (ours)

Run 0.80 0.163±0.008 0.013±0.002 0.165±0.017 2.811±0.048 0.584±0.054 0.478±0.007

Jog 0.83 0.120±0.007 0.021±0.000 0.024±0.004 2.017±0.052 0.575±0.007 0.507±0.010

Sideflip 2.44 0.387±0.011 0.138±0.004 0.145±0.006 2.276±0.014 1.118±0.034 1.350±0.049

Crawl 2.93 0.050±0.006 0.027±0.000 0.028±0.002 0.646±0.089 0.430±0.006 0.283±0.002

Roll 2.00 0.141±0.031 0.115±0.132 0.152±0.005 1.576±0.318 0.994±0.051 1.330±0.101

Double Kong 5.17 0.214±0.014 0.223±0.006 0.030±0.001 1.309±0.043 0.784±0.013 0.473±0.004

Getup Facedown 3.03 0.096±0.018 0.023±0.001 0.022±0.001 0.838±0.029 0.433±0.008 0.325±0.005

Spinkick 1.28 0.064±0.010 0.078±0.062 0.025±0.000 1.453±0.327 1.222±0.233 0.774±0.007

Cartwheel 2.71 0.076±0.006 0.144±0.153 0.017±0.000 0.722±0.020 0.659±0.160 0.317±0.002

Backflip 1.75 0.267±0.015 0.111±0.054 0.062±0.001 2.243±0.113 1.103±0.024 0.878±0.013

Climb 9.97 0.185±0.021 0.066±0.004 0.046±0.031 1.190±0.012 0.567±0.015 0.374±0.071

Dance A 1.62 0.065±0.009 0.065±0.029 0.028±0.007 0.895±0.108 0.830±0.090 0.428±0.014

Walk 0.96 0.132±0.021 0.009±0.001 0.009±0.001 1.394±0.123 0.286±0.005 0.213±0.003

AMASS DanceDB 2,804 0.299±0.001 0.045±0.002 0.044±0.001 1.156±0.009 0.504±0.019 0.387±0.010

LaFAN1 subset 5,470 0.438±0.000 0.029±0.000 0.028±0.000 1.302±0.000 0.511±0.000 0.393±0.000

Table 2. Position tracking errors (Eq. 12) of simulated EVAL robots trained
using ADD, AMP [Peng et al. 2021], and DeepMimic [Peng et al. 2018]. Only
the position tracking errors are reported for brevity, showing the mean ± 1
standard deviation across three random seeds, with 4096 test episodes per
seed. The results show that ADD maintains strong tracking performance
comparable to DeepMimic on a different character morphology.

Skill Position Tracking Error [m]
AMP DeepMimic ADD (ours)

Walk 0.020±0.001 0.013±0.002 0.036±0.002

Kick 0.030±0.00 0.012±0.000 0.008±0.000

Punch 0.020±0.003 0.007±0.000 0.005±0.000

Figure 4 compares the learning curves of humanoid characters
trained using ADD, AMP, and DeepMimic. ADD demonstrates better
consistency than DeepMimic across different seeds. DeepMimic
policies converge to local optima in half of the seeds when imitating
the Backflip and Cartwheel motions. Learning curves for all skills
and characters can be found in Supplementary B.5.

Achieving high-quality motion tracking with DeepMimic often
requires careful tuning of numerous reward parameters. This tun-
ing process can require significant domain knowledge and time.
Some parameter settings might improve a subset of the objectives,
but degrade the performance of other objectives. Poorly selected
parameters can result in low motion quality and inferior sample effi-
ciency, which presents a challenge for applying DeepMimic to new
reference motions or characters. In our experiments, DeepMimic’s
hyperparameters required careful re-tuning when switching from

Fig. 4. Learning curves of AMP, DeepMimic, and ADD, each trained with 5
different random seeds. ADD demonstrates better consistency than Deep-
Mimic across different seeds. DeepMimic policies converge to suboptimal
behaviors in half of the seeds when tracking the Backflip and Cartwheel
motions.

the humanoid character to the EVAL robot to maintain good track-
ing performance (Supplementary B.4). In comparison, ADD can
automatically weigh the different objectives, reducing the burden of
manual reward engineering. The sensitivity analysis of DeepMimic
in Supplementary B.3 provides further experiments that highlight
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Table 3. Performance of various methods when applied to a composite task
that combines motion imitation with a target steering objective. Motion
imitation performance is measured via the position tracking error, while
task performance is measured by the velocity error

����v𝑡 − 𝑣∗d∗𝑡 ����, where v𝑡
is the 2D root velocity of the character and 𝑣∗d∗𝑡 the 2D target velocity.
ADD, via automatically balancing the different objectives, achieved optimal
performance on both objectives.

Pos Tracking Err [m] Target Vel Err [m/s]

Method
Skill Run Walk Run Walk

AMP 0.188±0.001 0.117±0.001 0.810±0.015 0.374±0.042

DeepMimic 0.048±0.000 0.034±0.003 0.882±0.038 0.411±0.049

ADD
(ours) 0.029±0.001 0.024±0.001 0.803±0.009 0.274±0.003

the challenges of DeepMimic’s reward design and the robustness of
ADD.

However, ADD can struggle to reproduce certain highly dynamic
motions (e.g., sideflip and roll), often converging to suboptimal
behaviors. In the case of the sideflip, the policy learns to stand on
the ground without executing the full flip. Prior methods address
this by incorporating additional early termination heuristics [Luo
et al. 2023; Peng et al. 2018], which we deliberately omitted to
ensure a fair comparison and focus our evaluations on the effects of
different imitation objectives. Additionally, ADD is less precise than
DeepMimic on some forward locomotion skills, such as humanoid
running and robot walking. The performance gap stems from ADD’s
difficulty in accurately tracking the root position, which is crucial
for imitating forward locomotion behaviors. We hypothesize that
this shortcoming arises due to the root position only accounting for
three elements within the high-dimensional differential vector Δ,
and the gradient penalty restricts the discriminator from placing
significantly greater emphasis on the root position errors.

6.5 Tasks
In this section, we evaluate the effectiveness of ADD on training
control policies that can both imitate motion clips and accomplish
additional task objectives. Our experiments focus on a target steer-
ing task, where the objective is to move at a target speed 𝑣∗ along
a target direction d∗𝑡 , specified by a 2D unit vector on the horizon-
tal plane. For ADD, these task objectives are incorporated directly
into the differential vector Δ, whereas for AMP and DeepMimic, a
separate task reward is introduced alongside the imitation reward
(Supplementary B.6). The target direction and speed are provided as
observations to the policy and are randomized during training. Ta-
ble 3 summarizes the performance of various methods. ADD is able
to automatically balance the various objectives, enabling policies
to follow the steering commands accurately while closely imitating
the desired reference motion.

7 NON-MOTION-IMITATION TASKS
To demonstrate that ADD is effective beyond motion imitation tasks,
we evaluate ADD on the Walker task [Tassa et al. 2018], a standard

(a) ADD (Ours)

(b) Manual Reward

Fig. 5. Qualitative results of ADD on the Walker task, a standard RL bench-
mark. The walker trained using ADD exhibits behaviors comparable in
quality to those learned with manually designed reward functions from
Tassa et al. [2018].

(a) ADD (Ours)

(b) Manual Reward

Fig. 6. Qualitative results of ADD on training a UniTree Go1 quadruped to
walk. The arrow denotes the steering command. Compared to controllers
trained with manually tuned rewards [Rudin et al. 2022], the ADD Go1
policy displays more natural gaits, with greater foot lift and longer strides.

RL benchmark task, and a UniTree Go1 walking task from a widely-
used framework for robotic locomotion [Rudin et al. 2022]. The
Walker task consists of 3 different objectives, whereas the Go1 task
presents a much more complex reward function with 12 objectives,
including 3 dynamic steering commands. These experiments demon-
strate ADD’s ability to balance a number of competing objectives.

7.1 Training
Policies are trained using PPO with either ADD or manually-designed
reward functions from Tassa et al. [2018] and Rudin et al. [2022].
The ADD training procedure largely follows Algorithm 1, with the
key difference being the absence of reference motions. Instead, the
target state ŝ𝑡 is composed of target values specified by the task,
such as velocity commands or target orientations. Implementation
details for each task are available in Supplementary C and D.

7.2 Results
Figures 5 and 6 present qualitative comparisons between ADD and
manually-designed reward functions on the two tasks: training a 2D
walker to run and a quadrupedal Go1 robot to walk while following
steering commands. Examples of the learned behaviors are available
in the supplementary video.

As shown in Figure 5, the ADD policy produces upright and fast
running behaviors of comparable performance to those produced
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Fig. 7. Learning curves comparing ADD to the manually designed reward
function from Tassa et al. [2018] on the 2D Walker task. Returns are cal-
culated according to the reward function from Tassa et al. [2018] and nor-
malized between the minimum and maximum possible returns per episode.
Statistics are computed over 10 random seeds. ADD demonstrates compara-
ble performance and sample efficiency to the hand-crafted reward function,
despite requiring no manual reward engineering or tuning.

Fig. 8. Learning curves comparing ADD to the manually tuned reward
function from Rudin et al. [2022] on training a Go1 quadruped to move.
Results are shown across 5 random seeds per method. While ADD performs
slightly worse in following linear velocity commands, it achieves lower roll
and pitch angular velocities–indicating a more stable robot base–and lower
DoF accelerations, which means smoother control over time.

by the manually-designed reward function. This observation is sup-
ported by the learning curves in Figure 7, which compares the two
methods on the returns and the three different training objectives.
ADD achieves similar final performance and sample efficiency as
the manually-designed rewards. ADD produces a final return of

Fig. 9. Learning curves of ADD trained, under varying gradient penalty con-
figurations, to track different reference motions. We conduct ablations over
five gradient penalty configurations: none (None), penalty applied only to
negative samples (Neg), only to positive samples (Pos), to both sample types
(Both), and to interpolations between positive and negative samples as pro-
posed in Gulrajani et al. [2017] (WGAN-GP). Results indicate that Neg and
Both significantly outperform the other settings in tracking performance,
with Neg and Both achieving comparable results. These results highlight
the importance of applying the gradient penalty to negative samples for
ADD.

0.691± 0.053, whereas the manual rewards result in a final return of
0.705 ± 0.051. Furthermore, Figure 7 shows that ADD demonstrates
better consistency across training runs.

On the Go1 task, ADD enables the Go1 robot to develop more
natural gaits, characterized by greater foot lift and longer strides.
In comparison, the manually-designed reward produces less natu-
ral behaviors that exhibit more jittering and small shuffling steps.
Figure 8, which compares ADD and Rudin et al. [2022] on key objec-
tives, shows that while ADD performs slightly worse on following
linear velocity commands, it achieves lower roll and pitch angular
velocities, indicating a more stable robot base. Additionally, ADD
produces smoother movements with lower DoF accelerations, a
desirable property for real-world robotic deployment. A compre-
hensive set of learning curves for all training objectives is available
in Supplementary D.3.

Across different tasks and embodiments, ADD consistently matches
the performance of carefully designed reward functions with re-
spect to performance, motion quality, consistency, and sample ef-
ficiency, all while alleviating the dependence on manual reward
engineering. While manually tuned methods can be effective when
well-calibrated, they often require significant domain knowledge
and effort to balance different objectives. These results collectively
highlight ADD’s generality as an effective solution for a diverse
range of multi-objective RL tasks.
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8 GRADIENT PENALTY ABLATION
Gradient penalty is an effective regularizer in adversarial imita-
tion learning methods [Mescheder et al. 2018; Peng et al. 2021]. In
this section, we investigate the impact of different gradient penalty
configurations on the effectiveness of ADD. We examine five con-
figurations — no gradient penalty at all (None), gradient penalty
applied exclusively to negative samples (Neg), exclusively to posi-
tive samples (Pos), to both positive and negative samples (Both), and
to random interpolations between positive and negative samples as
proposed in Gulrajani et al. [2017] (WGAN-GP). In the WGAN-GP
setting, following Gulrajani et al. [2017], the gradient penalty is
modified to enforce 1-Lipschitz continuity,

L𝐺𝑃 (𝐷) = E𝑝 (s |𝜋 )
[(∥∇𝜙𝐷 (𝜙) |𝜙=Δ∥2 − 1)2] , (13)

as opposed to Eq. 9. Figure 9 shows that models trained without
regularization (None) or with WGAN-GP exhibit significantly higher
tracking errors. Although the WGAN-GP has proven effective for
prior adversarial methods, it does not appear to be suitable for ADD.
Models trained under the Pos configuration, while notably more
accurate than the None and WGAN-GP settings, result in higher
tracking errors and worse sample efficiency compared to Neg and
Both settings. Models trained under the Neg and Both settings
produce comparable results in terms of tracking error, with the Both
configuration showing a slight advantage with regard to sample
efficiency. Nonetheless, these findings validate the importance of
applying the gradient penalty to negative samples for the adversarial
differential discriminator, instead of only positive samples as done
in prior work [Peng et al. 2021]. Moreover, these results underscore
the critical role of the gradient penalty in stabilizing training and
enabling effective learning, as models trained without it often fail
to learn effective policies.

9 DISCUSSION AND FUTURE WORK
In this work, we present an adversarial multi-objective optimization
technique that is broadly applicable to a variety of tasks, including
motion imitation for physics-based character animation. Our tech-
nique enables both a simulated humanoid and a simulated EVAL
robot to accurately replicate a diverse suite of challenging skills,
achieving comparable performance to state-of-the-art motion track-
ing methods, without requiring manual reward engineering. Despite
its effectiveness, our method has certain limitations. One major lim-
itation is that ADD is susceptible to converging to locally optimal
behaviors. For example, when attempting to reproduce the highly
dynamic rolling motion, characters trained with ADD learn to sim-
ply lie down and get up, rather than completing a full roll. Prior
motion tracking methods typically mitigate the chances of converg-
ing to such behaviors by incorporating additional heuristics, such as
early termination based on tracking error [Luo et al. 2023; Peng et al.
2018]. Furthermore, recent studies show that training controllers on
massive motion datasets is a scalable approach to enable physically
simulated characters to acquire diverse behaviors [Luo et al. 2023;
Tessler et al. 2024; Yao et al. 2024]. We would like to explore, in fu-
ture work, applying ADD to train a general controller that does not
rely on hand-crafted reward functions, a common dependency in
existing frameworks. Finally, another interesting avenue for future

work is to apply ADD to multi-objective optimization or multi-task
problems in other domains, such as computer vision and natural
language processing.
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A DIDACTIC EXAMPLE
We include a didactic example to analyze the behavior of ADD. In
this experiment, we apply ADD to a simple regression task, where
the goal is to approximate a 1D target function 𝑓 (𝑥) = cos(𝑥2.5),
visualized in Figure 10. The target function is designed to present a
function approximator with varying levels of difficulty in different
regions of the input space. Near the origin, where the oscillation
frequency is low, 𝑓 (𝑥) = cos(𝑥2.5) is easy to model. However, as the
frequency increases farther from the origin, the function becomes
progressively difficult to model. This variation in the smoothness of
the target function presents a testbed for examining the adaptive
behavior of ADD to attend to different sub-objectives based on their
relative difficulty.

A.1 Experimental Setup
We uniformly sample 𝑁 = 512 points from 𝑓 (𝑥) within the interval
[0, 4.3] to build the training dataset. A network 𝐺 (𝑥) is trained to
predict an output 𝑦𝑖 that approximates 𝑦 = 𝑓 (𝑥) for every 𝑥𝑖 in
the dataset where 1 ≤ 𝑖 ≤ 𝑁 . The prediction errors for the entire
dataset are then aggregated into a vector,

Δ =


𝑦1 − 𝑦1

...
𝑦𝑁 − 𝑦𝑁

 ,
and provided as input to the discriminator 𝐷 (Δ). Both 𝐺 (𝑥) and
𝐷 (Δ) consist of 2 hidden layers with 1024 and 512 units, respectively.
Table 4 provides a detailed documentation of the hyperparameters
used in this experiment.

A.2 Results
Figure 10 demonstrates that the regression model trained through
ADD provides a reasonable approximation of the ground truth tar-
get function. To analyze the discriminator’s behavior in dynamically

Fig. 10. Visualization of predictions made by ADD (red line) using data
points (blue circles) sampled from the target function 𝑓 (𝑥 ) = cos(𝑥2.5 ) .
ADD approximates the ground truth data adequately.

Table 4. ADD regression experiment hyperparameters.

Parameter Value
𝜆GP Gradient Penalty 0.1
Generator Batch Size 512
𝐷 Discriminator Stepsize 10−5

𝐺 Generator Stepsize 10−4

weighting objectives over the course of training, Figure 11 depicts
the gradients of the discriminator’s output with respect to the pre-
diction error for each sample ∇Δ𝐷 (Δ) at different training iterations.
The 𝑁 prediction errors are the objectives of this MOO problem,
and the gradients ∇Δ𝐷 (Δ) can be interpreted as the weights as-
signed by 𝐷 (Δ) to each objective. At the beginning of training, the
discriminator assigns random weights to the objectives. As training
progresses, and 𝐺 (𝑥) learns how to fit 𝑓 (𝑥) accurately near the ori-
gin, the discriminator automatically begins to assign higher weights
to regions farther from the origin, which exhibit larger prediction er-
rors. ADD’s adaptive weighting of different objectives ensures that
more difficult objectives receive more focus as training progresses,
preventing the easier objectives from dominating the overall loss.

B MOTION TRACKING ADDITIONAL DETAILS

B.1 Experimental Setup and Computational Cost
All experiments are conducted on Nvidia A100 GPUs, with physics
simulations implemented using Isaac Gym [Makoviychuk et al.
2021]. Humanoid character simulations run at 120 Hz, and the policy
is queried at 30 Hz. For most motion imitation tasks on the humanoid
character (excluding DanceDB and LaFAN1), policies are trained
with approximately 750–850 million samples, requiring about 9 h
for ADD, 12 h for AMP, and 6.5 h for DeepMimic. On the larger
DanceDB dataset [Mahmood et al. 2019], all methods are trained
with roughly 9 billion samples, taking 5 days for ADD, 6 days for
AMP, and 3.5 days for DeepMimic. For the LaFAN1 subset [Harvey
et al. 2020], training is extended to 18 billion samples, requiring 10
days for ADD, 7 days for DeepMimic, and 11 days for AMP.

Each EVAL robot policy is trained with approximately 900 million
samples, requiring a wall-clock time of around 16 h for ADD, 18 h for
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Fig. 11. Magnitudes of the gradients of the discriminator’s output with
respect to the prediction error for each sample at different training iterations.
As training progresses and𝐺 (𝑥 ) gradually learns to approximate samples
near the origin, the discriminator assigns higher and higher weights to
samples farther from the origin, essentially honing in on the more difficult
objectives.

AMP, and 13 h for DeepMimic. The robot simulations are performed
at a simulation frequency of 150 Hz, with the control frequency set
to 50 Hz.

B.2 DeepMimic’s Imitation Reward Function
Peng et al. [2018] employ a manually-designed motion imitation
reward function composed of five sub-terms,

𝑟DM
𝑡 = 𝑤𝑝𝑟𝑝𝑡 +𝑤 𝑗𝑣𝑟

𝑗 𝑣
𝑡 +𝑤𝑟 𝑣𝑟𝑟 𝑣𝑡 +𝑤𝑒𝑟𝑒𝑡 +𝑤𝑐𝑟𝑐𝑡 . (14)

The pose reward 𝑟𝑝𝑡 computes the difference between the joint ori-
entation quaternions of the simulated character q𝑗𝑡 and those of the
reference motion q̂𝑗𝑡 ,

𝑟
𝑝
𝑡 = exp

−𝛼𝑝 ©­«
∑︁
𝑗




q̂𝑗𝑡 ⊖ q𝑗𝑡



2ª®¬

 . (15)

Here, 𝛼𝑝 is a manually-tuned hyperparameter. The joint velocity
reward 𝑟 𝑗 𝑣𝑡 is computed from the difference of local joint velocities,
with ¤q𝑗𝑡 being the angular velocity of the 𝑗-th joint,

𝑟
𝑗 𝑣
𝑡 = exp

−𝛼 𝑗 𝑣 ©­«
∑︁
𝑗




 ¤̂q𝑗𝑡 − ¤q𝑗𝑡 


2ª®¬
 . (16)

The root velocity reward 𝑟𝑟 𝑣𝑡 measures the difference between the
root velocities of the simulated character and that of the reference
motion, with v𝑟𝑡 representing the linear and angular root velocity,

𝑟𝑟 𝑣𝑡 = exp
[
−𝛼𝑟 𝑣

(

v̂𝑟𝑡 − v𝑟𝑡


2

)]
. (17)

The end-effector reward 𝑟𝑒𝑡 calculates the difference in the end-
effector positions of the simulated character p𝑒𝑡 and those of the

Table 5. DeepMimic sensitivity analysis parameter settings. Reward weights
are listed in the order of 𝑤𝑝 , 𝑤 𝑗𝑣, 𝑤𝑟𝑣, 𝑤𝑒 , 𝑤𝑐 , and reward scales are listed
in the order of 𝛼𝑝 , 𝛼 𝑗𝑣, 𝛼𝑟𝑣, 𝛼𝑒 , 𝛼𝑐 . * denotes the final parameter setting
used in the experiments.

Setting Parameters
Reward Weights Reward Scales

Setting 1 0.2, 0.2, 0.2, 0.2, 0.2 1, 1, 1, 1, 1
Setting 2 0.5, 0.1, 0.15, 0.1, 0.15 4, 10, 0.2, 1, 0.1
Setting 3 0.5, 0.1, 0.15, 0.1, 0.15 0.2, 0.05, 3, 1.5, 8
Setting 4 0.5, 0.1, 0.15, 0.1, 0.15 10, 0.04, 100, 7.5, 75
Setting 5 0.2, 0.1, 0.2, 0.05, 0.45 0.25, 0.01, 5, 1, 10
Default* 0.5, 0.1, 0.15, 0.1, 0.15 0.25, 0.01, 5, 1, 10

Fig. 12. Learning curves comparing the tracking performance of DeepMimic,
under different parameter settings, with ADD on a subset of the LaFAN1
dataset [Harvey et al. 2020]. Table 5 provides more details on the parame-
ter settings. DeepMimic’s performance is sensitive to its hyperparameters.
Some configurations can lead to poor tracking performance and sample
efficiency. Some settings lead to improvement on certain metrics but de-
grade others. Selecting an optimal set of hyperparameters requires domain
knowledge and significant manual tuning. In contrast, ADD automatically
balances competing objectives during training, consistently achieving supe-
rior tracking accuracy and sample efficiency across metrics.

reference motion p̂𝑒𝑡 ,

𝑟𝑒𝑡 = exp
[
−𝛼𝑒

(∑︁
𝑒



p̂𝑒𝑡 − p𝑒𝑡


2

)]
. (18)

Finally, 𝑟𝑐𝑡 encourages the character’s center-of-mass p𝑐𝑡 to match
the center-of-mass of the reference motion p̂𝑐𝑡 ,

𝑟𝑐𝑡 = exp
[
−𝛼𝑐

(

p̂𝑐𝑡 − p𝑐𝑡


2

)]
. (19)

In the implementation, every joint orientation or velocity error is
also multiplied by a joint-specific weight in the calculation of 𝑟𝑝𝑡
and 𝑟 𝑗 𝑣𝑡 .
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Table 6. ADD humanoid character motion imitation experiment hyperpa-
rameters.

Parameter Value

𝜆GP Gradient Penalty 0.1 (Climb)
1 (Other)

𝐾 Update Minibatch Size 4096 × 4
𝜋 Policy Stepsize 1 × 10−4

𝑉 Value Stepsize 1 × 10−4

𝐷 Discriminator Stepsize 5 × 10−4

B Experience Buffer Size 4096 × 32
𝛾 Discount 0.99
SGD Momentum 0.9
GAE(𝜆) 0.95
TD(𝜆) 0.95
PPO Clip Threshold 0.2

B.3 DeepMimic Sensitivity Analysis
To evaluate how sensitive DeepMimic is to its reward hyperparam-
eters, we use DeepMimic to train simulated humanoid characters to
imitate motions from the LaFAN1 subset using six different parame-
ter settings. Details of the six settings are provided in Table 5, and
the resulting learning curves are shown in Figure 12.

The results show considerable variation in both tracking perfor-
mance and sample efficiency across settings. As shown in Figure 12,
Setting 4 achieves strong tracking accuracy, but demonstrates poor
sample efficiency. Setting 1 produces motions with accurate root
rotation, root angular velocity, and position tracking, but suffers
from high DoF velocity tracking errors, which lead to visibly jittery
motions. Setting 2 performs poorly across all metrics and learns
slowly, suggesting that certain parameter choices can significantly
degrade both sample efficiency and tracking quality. In contrast,
Settings 3, 5, and default*—sharing similar parameter configura-
tions—consistently achieve great tracking accuracy and learning
efficiency. Based on this observation, Setting default* is selected
for the humanoid motion imitation experiments. Meanwhile, ADD
achieves superior tracking accuracy and sample efficiency across
all metrics without requiring manual tuning.

These findings highlight a key limitation of DeepMimic: its perfor-
mance is highly sensitive to the choice of hyperparameters. While
some configurations may yield strong results, finding them often
requires extensive domain knowledge and iterative tuning. Poorly
chosen parameters can result in degraded motion quality or ineffi-
cient learning, which presents a challenge for generalizing Deep-
Mimic to new tasks or embodiments. In contrast, ADD’s ability to
automatically balance objectives leads to more robust and efficient
learning across metrics, reducing the burden of manual design.

B.4 Hyperparameter Settings
Tables 6, 7, 8 list the hyperparameters of ADD, DeepMimic, and
AMP used in the humanoid character motion imitation experiments.
Similarly, Tables 9, 10, 11 provide the hyperparameters used in the
EVAL robot motion imitation experiments.

Table 7. DeepMimic humanoid character motion imitation experiment hy-
perparameters.

Parameter Value
𝐾 Update Minibatch Size 4096 × 4
𝜋 Policy Stepsize 5 × 10−5

𝑉 Value Stepsize 5 × 10−5

B Experience Buffer Size 4096 × 32
𝛾 Discount 0.99
SGD Momentum 0.9
GAE(𝜆) 0.95
TD(𝜆) 0.95
PPO Clip Threshold 0.2
𝑤𝑝 ,𝑤 𝑗𝑣,𝑤𝑟 𝑣,𝑤𝑒 ,𝑤𝑐 Reward Weights 0.5, 0.1, 0.15, 0.1, 0.15
𝛼𝑝 , 𝛼 𝑗𝑣, 𝛼𝑟 𝑣, 𝛼𝑒 , 𝛼𝑐 Reward Scales 0.25, 0.01, 5.0, 1.0, 10.0

Joint Weights
1.0, 0.6, 0.6, 0.4, 0.0,
0.6, 0.4, 0.0, 1.0, 0.6,

0.4, 1.0, 0.6, 0.4

Table 8. AMP humanoid character motion imitation experiment hyperpa-
rameters.

Parameter Value
𝜆GP Gradient Penalty 5.0
𝐾 Update Minibatch Size 4096 × 4
𝜋 Policy Stepsize 5 × 10−5

𝑉 Value Stepsize 5 × 10−5

𝐷 Discriminator Stepsize 2.5 × 10−4

B Experience Buffer Size 4096 × 32
𝛾 Discount 0.99
SGD Momentum 0.9
GAE(𝜆) 0.95
TD(𝜆) 0.95
PPO Clip Threshold 0.2

DeepMimic has significantly more hyperparameters to be tuned to
achieve good tracking performance than ADD and AMP. Moreover,
these weights need to be re-tuned when switching to characters of
different morphologies, as shown in Tables 7 and 10. In contrast,
many fewer hyperparameters need to be adjusted for ADD when
switching to different characters.

B.5 Learning Curves
Figures 13 and 14 present the learning curves of DeepMimic, AMP,
and ADD across all skills for the EVAl robot and the humanoid
character, respectively.

B.6 Steering Task Reward Functions
For ADD, task objectives are appended to the differential vector Δ𝑡 ,

Δ𝑡 =


Δ

tracking
𝑡

𝑣∗ − v𝑇𝑡 d∗𝑡
−

����v𝑡 − (v𝑇𝑡 d∗𝑡 )d∗𝑡
����
 ,
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Fig. 13. Learning curves illustrating the position tracking errors of simulated robots trained using AMP [Peng et al. 2021], DeepMimic [Peng et al. 2018], and
our method ADD. Statistics over 3 training runs, initialized with different random seeds, are depicted. Without relying on manually designed reward functions,
ADD enables simulated robots to reproduce a set of challenging skills with quality on par with DeepMimic, a state-of-the-art motion-tracking method.

Fig. 14. Learning curves comparing the tracking performance of simulated humanoid characters trained via AMP [Peng et al. 2021], DeepMimic [Peng et al.
2018], and our method ADD. Statistics are computed over 5 training runs initialized with different random seeds, except for the LaFAN1 subset (1 run due
to computational cost). ADD is capable of learning highly agile and acrobatic skills, achieving comparable tracking performance and sample efficiency to
DeepMimic, without requiring manual reward engineering. Moreover, ADD exhibits better consistency across seeds, whereas DeepMimic often converges to
suboptimal behaviors in some seeds.
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Table 9. ADD EVAL robot motion imitation experiment hyperparameters.

Parameter Value
𝜆GP Gradient Penalty 1
B Experience Buffer Size 4096 × 32
𝐾 Update Minibatch Size 4096 × 4
𝜋 Policy Stepsize 8 × 10−5

𝑉 Value Stepsize 8 × 10−5

𝐷 Discriminator Stepsize 4 × 10−4

𝛾 Discount 0.99
SGD Momentum 0.9
GAE(𝜆) 0.95
TD(𝜆) 0.95
PPO Clip Threshold 0.2

Table 10. DeepMimic EVAL robot motion imitation experiment hyperpa-
rameters.

Parameter Value
𝐾 Update Minibatch Size 4096 × 4
𝜋 Policy Stepsize 1 × 10−4

𝑉 Value Stepsize 1 × 10−4

B Experience Buffer Size 4096 × 32
𝛾 Discount 0.99
SGD Momentum 0.9
GAE(𝜆) 0.95
TD(𝜆) 0.95
PPO Clip Threshold 0.2
𝑤𝑝 ,𝑤 𝑗 𝑣,𝑤𝑟 𝑣,𝑤𝑒 ,𝑤𝑐 Reward Weights 0.5, 0.05, 0.5, 0.15, 0.1
𝛼𝑝 , 𝛼 𝑗 𝑣, 𝛼𝑟 𝑣, 𝛼𝑒 , 𝛼𝑐 Reward Scales 1.0, 0.01, 10.0, 1.0, 10.0

Joint Weights

1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0,

1.0

Table 11. AMP EVAL robot motion imitation experiment hyperparameters.

Parameter Value
𝜆GP Gradient Penalty 0.1
𝐾 Update Minibatch Size 4096 × 4
𝜋 Policy Stepsize 8 × 10−5

𝑉 Value Stepsize 8 × 10−5

𝐷 Discriminator Stepsize 8 × 10−5

B Experience Buffer Size 4096 × 32
𝛾 Discount 0.99
SGD Momentum 0.9
GAE(𝜆) 0.95
TD(𝜆) 0.95
PPO Clip Threshold 0.2

and are amplified by a factor 50 after normalization. The reward is
then simply 𝑟𝑡 = − log(1 − 𝐷 (Δ𝑡 )). For AMP and DeepMimic, the

Fig. 15. Robustness of locomotion policies in Sec. 6.5 under random ex-
ternal force perturbations. Policies are trained without perturbations and
stress-tested by randomly applying forces up to 300 N during inference.
Performance is reported in terms of the episode length until loss of balance,
as well as position tracking error and target velocity error before falling.
Lighter bars denote nominal performance, and darker bars indicate perfor-
mance under perturbation. ADD exhibits levels of degradation comparable
to DeepMimic, reflecting a similar degree of robustness.

reward is changed to

𝑟𝑡 = 0.5 𝑟 tracking
𝑡 + 0.5 𝑟𝐺𝑡 , (20)

where

𝑟𝐺𝑡 = exp
[
−2

((𝑣∗ − v𝑇𝑡 d∗𝑡 )2 + 0.1
������v𝑡 − (v𝑇𝑡 d∗𝑡 )d∗𝑡

������2 ) ]
. (21)

B.7 Robustness to Perturbations
To assess the robustness of locomotion policies trained using our
approach, we evaluate their performance under random force per-
turbations and compare the results with prior methods. We take the
policies trained in Section 6.5 and randomly apply random forces
of up to 300 N on the character’s root. These perturbations are
introduced only at test time; the policies are not exposed to such
disturbances during training. Performance is measured with two
criteria: (1) the duration the policy maintains balance before falling,
and (2) the accuracy with which the policy follows the reference
motion and steering commands while subjected to perturbations,
prior to falling. As shown in Figure 15, ADD exhibits a performance
degradation comparable to DeepMimic, indicating a similar degree
of robustness to perturbations.

C WALKER ADDITIONAL DETAILS
All policies are trained for approximately 60 million samples, which
takes a wall-clock time of around 24 h for the manual rewards and
26 h for ADD on 2 CPU cores.

C.1 Reward Function
ADD’s reward is 𝑟𝑡 = − log(1 − 𝐷 (Δ𝑡 )), where Δ𝑡 is simply:

Δ𝑡 =


1.2 − ℎ𝑡
1 − 𝑢𝑡

8.0 − 𝑣𝑡

 ,
with ℎ𝑡 being the walker’s height, 𝑢𝑡 the cosine of the torso angle,
and 𝑣𝑡 the walker’s horizontal speed. 1.2, 1, and 8.0 are target values
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Table 12. ADD walker experiment hyperparameters.

Parameter Value
𝜆GP Gradient Penalty 0.001
𝐾 Update Minibatch Size 512
𝜋 Policy Stepsize 5 × 10−4

𝑉 Value Stepsize 5 × 10−4

𝐷 Discriminator Stepsize 5 × 10−5

B Experience Buffer Size 4096
𝛾 Discount 0.99
SGD Momentum 0.9
GAE(𝜆) 0.95
TD(𝜆) 0.95
PPO Clip Threshold 0.02

from the problem definition, not tunable hyperparameters. Com-
pared to the reward function in Tassa et al. [2018], ADD employs a
much simpler formulation with significantly fewer manually-tuned
hyperparameters.

The manually-designed reward function used in Tassa et al. [2018]
is as follows:

𝑟manual = 𝑟stand ×
5 · 𝑟move + 1

6

𝑟stand =
3 · tol (ℎ𝑡 ; 1.2,∞, 0.1, 0.6, gaussian) + 1+𝑢𝑡

2
4

𝑟move = tol (𝑣𝑡 ; 8.0,∞, 0.5, 4.0, linear)

(22)

The tolerance function is defined as:

tol(𝑥 ;𝑎, 𝑏, 𝑣𝑚,𝑚, sigmoid) ={
1, if 𝑎 ≤ 𝑥 ≤ 𝑏
𝑓 (𝑑 (𝑥 ;𝑎, 𝑏,𝑚); 𝑣𝑚, sigmoid), otherwise

, (23)

where
𝑑 (𝑥 ;𝑎, 𝑏,𝑚) = max(𝑎 − 𝑥, 𝑥 − 𝑏)

𝑚
.

Here, [𝑎, 𝑏] represents the bounds,𝑚 is the margin, 𝑣𝑚 is the value
at margin, and sigmoid is the type of sigmoid function.

If sigmoid = linear:

𝑓 (𝑑 ; 𝑣𝑚, linear) =
{

1 − (1 − 𝑣𝑚) · 𝑑, if | (1 − 𝑣𝑚) · 𝑑 | < 1
0, otherwise

. (24)

If sigmoid = gaussian:

𝑓 (𝑑 ; 𝑣𝑚, gaussian) = exp
(
− ln

(
1
𝑣𝑚

)
· 𝑑2

)
. (25)

C.2 Hyperparameters
The hyperparameters for ADD in the Walker task are documented
in Table 12.

D GO1 ADDITIONAL DETAILS
All policies are trained for approximately 1 billion samples, which
takes about 3 hours for both ADD and the manually designed re-
ward baseline on an A100 GPU. During training, early termination

is applied in both methods when the torso, thigh, or hip of the
quadruped makes contact with the ground.

D.1 Reward Function
The reward for ADD is given by 𝑟𝑡 = − log(1−𝐷 (Δ𝑡 )), where Δ𝑡 is:

Δ𝑡 =



0 − v𝑏,𝑧
0 − ∥𝝎𝑏,𝑥𝑦 ∥2
0 − ∥z𝑥𝑦 ∥2

0.3 − ℎ𝑏
500 −max

(∥𝝉 𝑗 ∥2, 500
)

100 −max
(∥ ¤q𝑗 ∥2, 100

)
100000 −max

(∥ ¥q𝑗 ∥2, 100000
)

0.5 −max
(
∥ ¤q∗𝑗 ∥2, 0.5

)
v∗
𝑏,𝑥
− v𝑏,𝑥

v∗
𝑏,𝑦
− v𝑏,𝑦

𝝎∗
𝑏,𝑧
− 𝝎𝑏,𝑧

0.02 −∑4
𝑓 =0 𝑡air,𝑓



. (26)

The notations follow the definitions in Table 13. The 𝑧 axis is aligned
with gravity.

Table 13. Definition of symbols.

Joint positions q𝑗
Joint velocities ¤q𝑗
Joint accelerations ¥q𝑗
Target joint positions q∗𝑗
Joint torques 𝝉 𝑗
Base linear velocity v𝑏
Base angular velocity 𝝎𝑏
Base height ℎ𝑏
Commanded base linear velocity v∗

𝑏
Commanded base angular velocity 𝝎∗

𝑏
Number of collisions 𝑛𝑐
Feet air time tair
Environment time step 𝑑𝑡
Gravity vector z

The manual reward function we compare to is provided in Table
14. The reward terms are taken from what Rudin et al. [2022] used
in their open-source repository. The weights are largely similar to
the weights they used for the A1 robot, with some weights tuned
to achieve better performance on the Go1 robot. Extensive hyper-
parameter tuning was performed to ensure the baseline method
achieves good performance. ADD has fewer tunable hyperparame-
ters than the manually-designed reward function.

D.2 Hyperparameters
Training hyperparameters of ADD and the manual reward function
are detailed in Table 15 and 16, respectively.
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Table 14. Definition of reward terms used in [Rudin et al. 2022], with𝜙 (𝑥 ) :=
exp

(
− ∥𝑥 ∥20.25

)
. The 𝑧 axis is aligned with gravity.

definition weight

Linear velocity tracking 𝜙 (v∗
𝑏,𝑥𝑦
− v𝑏,𝑥𝑦) 1𝑑𝑡

Angular velocity tracking 𝜙 (𝝎∗
𝑏,𝑧
− 𝝎𝑏,𝑧) 0.5𝑑𝑡

Linear velocity penalty −v2
𝑏,𝑧

2𝑑𝑡
Angular velocity penalty −∥𝝎𝑏,𝑥𝑦 ∥2 0.05𝑑𝑡
Orientation penalty −∥z𝑥𝑦 ∥2 0𝑑𝑡
Root Height −(0.3 − ℎ𝑏 )2 50𝑑𝑡
Joint velocity −∥ ¤q𝑗 ∥2 0𝑑𝑡
Joint acceleration −∥¥q𝑗 ∥2 2.5 × 10−7 𝑑𝑡
Joint torques −∥𝝉 𝑗 ∥2 0.0002𝑑𝑡
Action rate −∥ ¤q∗𝑗 ∥2 0.01𝑑𝑡
Feet air time

∑4
𝑓 =0 (tair,𝑓 − 0.2) 1𝑑𝑡

Table 15. ADD Go1 quadruped training hyperparameters.

Parameter Value
𝜆GP Gradient Penalty 0.1
𝐾 Update Minibatch Size 4096 × 6
𝜋 Policy Stepsize 1 × 10−4

𝑉 Value Stepsize 1 × 10−4

𝐷 Discriminator Stepsize 5 × 10−4

B Experience Buffer Size 4096 × 24
𝛾 Discount 0.99
GAE(𝜆) 0.95
TD(𝜆) 0.95
PPO Clip Threshold 0.02

Table 16. Manual reward Go1 quadruped training hyperparameters.

Parameter Value
𝐾 Update Minibatch Size 4096 × 6
𝜋 Policy Stepsize 1 × 10−4

𝑉 Value Stepsize 1 × 10−4

B Experience Buffer Size 4096 × 24
𝛾 Discount 0.99
GAE(𝜆) 0.95
TD(𝜆) 0.95
PPO Clip Threshold 0.02

D.3 Full Learning Curves
The comprehensive collection of learning curves on the quadrupedal
task can be found in Figure 16.

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.



20 • Ziyu Zhang, Sergey Bashkirov, Dun Yang, Yi Shi, Michael Taylor, and Xue Bin Peng

Fig. 16. Full learning curves for all training objectives on the quadruped task, with results averaged over five training runs initialized with different random
seeds. ADD outperforms the manually designed reward function from Rudin et al. [2022] on several metrics associated with torso stability and smooth control.
Overall, ADD achieves comparable sample efficiency, final performance, and consistency to the manually-designed reward function.
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