
Video Prediction Models as Rewards
for Reinforcement Learning

Alejandro Escontrela†∗ Ademi Adeniji† Wilson Yan†

Ajay Jain Xue Bin Peng Ken Goldberg

Youngwoon Lee Danijar Hafner Pieter Abbeel

University of California, Berkeley
†Equal contribution

Abstract

Specifying reward signals that allow agents to learn complex behaviors is a long-
standing challenge in reinforcement learning. A promising approach is to extract
preferences for behaviors from unlabeled videos, which are widely available on
the internet. We present Video Prediction Rewards (VIPER), an algorithm that
leverages pretrained video prediction models as action-free reward signals for
reinforcement learning. Specifically, we first train an autoregressive transformer
on expert videos and then use the video prediction likelihoods as reward signals
for a reinforcement learning agent. VIPER enables expert-level control without
programmatic task rewards across a wide range of DMC, Atari, and RLBench tasks.
Moreover, generalization of the video prediction model allows us to derive rewards
for an out-of-distribution environment where no expert data is available, enabling
cross-embodiment generalization for tabletop manipulation. We see our work as
starting point for scalable reward specification from unlabeled videos that will
benefit from the rapid advances in generative modeling. Source code and datasets
are available on the project website: https://escontrela.me/viper

1 Introduction

Frozen Video Prediction Model

x1 x2 x3 x4

r3= ln p𝜃(x4 | x1:3)

Figure 1: VIPER uses the next-token likeli-
hoods of a frozen video prediction model as a
general reward function for various tasks.

Manually designing a reward function is laborious
and often leads to undesirable outcomes [32]. This
is a major bottleneck for developing general decision
making agents with reinforcement learning (RL). A
more scalable approach is to learn complex behaviors
from videos, which can be easily acquired at scale for
many applications (e.g., Youtube videos).

Previous approaches that learn behaviors from videos
reward the similarity between the agent’s current ob-
servation and the expert data distribution [37, 38, 30,
43]. Since their rewards only condition on the current
observation, they cannot capture temporally mean-
ingful behaviors. Moreover, the approaches with
adversarial training schemes [30, 43] often result in
mode collapse, which hinders generalization.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).
∗Corresponding author: escontrela@berkeley.edu

https://escontrela.me/viper
mailto:escontrela@berkeley.edu

(a) DeepMind Control Suite
(15 tasks)

(b) Robot Learning Benchmark
(6 tasks)

(c) Atari
(7 tasks)

Figure 2: VIPER achieves expert-level control directly from pixels without access to ground truth
rewards or expert actions on 28 reinforcement learning benchmark tasks.

Other works fill in actions for the (action-free) videos using an inverse dynamics model [42, 8]. Dai
et al. [8] leverage recent advances in generative modeling to capture multi-modal and temporally-
coherent behaviors from large-scale video data. However, this multi-stage approach requires perform-
ing expensive video model rollouts to then label actions with a learned inverse dynamics model.

In this paper, we propose using Video Prediction Rewards (VIPER) for reinforcement learning.
VIPER first learns a video prediction model from expert videos. We then train an agent using
reinforcement learning to maximize the log-likelihood of agent trajectories estimated by the video
prediction model, as illustrated in Figure 1. Directly leveraging the video model’s likelihoods as a
reward signal encourages the agent to match the video model’s trajectory distribution. Additionally,
rewards specified by video models inherently measure the temporal consistency of behavior, unlike
observation-level rewards. Further, evaluating likelihoods is significantly faster than performing
video model rollouts, enabling faster training times and more interactions with the environment.

We summarize the three key contributions of this paper as follows:

• We present VIPER: a novel, scalable reward specification algorithm which leverages rapid im-
provements in generative modeling to provide RL agents with rewards from unlabeled videos.

• We perform an extensive evaluation, and show that VIPER can achieve expert-level control without
task rewards on 15 DMC tasks [44], 6 RLBench tasks [20], and 7 Atari tasks [3] (see examples in
Figure 2 and Appendix A.5).

• We demonstrate that VIPER generalizes to different environments for which no training data was
provided, enabling cross-embodiment generalization for tabletop manipulation.

Along the way, we discuss important implementation details that improve the robustness of VIPER.

2 Related Work

Learning from observations is an active research area which has led to many advances in imitation
learning and inverse reinforcement learning [27, 1, 49]. This line of research is motivated by the fact
that learning policies from expert videos is a scalable way of learning a wide variety of complex
tasks, which does not require access to ground truth rewards, expert actions, or interaction with the
expert. Scalable solutions to this problem would enable learning policies using the vast quantity of
videos on the internet. Enabling policy learning from expert videos can be largely categorized into
two approaches: (1) Behavioral cloning [31] on expert videos labelled with predicted actions and
(2) reinforcement learning with a reward function learned from expert videos.

Labelling videos with predicted actions An intuitive way of leveraging action-free expert videos
is to guess which action leads to each transition in expert videos, then to mimic the predicted actions.
Labelling videos with actions can be done using an inverse dynamics model, p(a|s, s′), which models
an action distribution given the current and next observations. An inverse dynamics model can be
learned from environment interactions [28, 42, 29] or a curated action-labelled dataset [2, 34]. Offline
reinforcement learning [24] can be also used instead of behavioral cloning for more efficient use of
video data with predicted actions [34]. However, the performance of this approach heavily depends
on the quality of action labels predicted by an inverse dynamics model and the quantity and diversity
of training data.

2

Reinforcement learning with videos Leveraging data from online interaction can further improve
policies trained using unlabelled video data. To guide policy learning, many approaches have learned
a reward function from videos by estimating the progress of tasks [37, 38, 25, 23] or the divergence
between expert and agent trajectories [43, 30]. Adversarial imitation learning approaches [43, 30]
learn a discriminator that discriminates transitions from the expert data and the rollouts of the
current policy. Training a policy to maximize the discriminator error leads to similar expert and
policy behaviors. However, the discriminator is prone to mode collapse, as it often finds spurious
associations between task-irrelevant features and expert/agent labels [50, 19], which requires a variety
of techniques to stabilize the adversarial training process [7]. In contrast, VIPER directly models the
expert video distribution using recent generative modeling techniques [10, 47], which offers stable
training and strong generalization.

Using video models as policies Recently, UniPi [8] uses advances in text-conditioned video
generation models [33] to plan a trajectory. Once the future video trajectory is generated, UniPi
executes the plan by inferring low-level controls using a learned inverse dynamics model. Instead of
using slow video generations for planning, VIPER uses video prediction likelihoods to guide online
learning of a policy.

3 Video Prediction Rewards

Algorithm 1: VIPER
Train video prediction model pθ on expert videos.
while not converged do

Choose action: at ∼ π(xt)
Step environment: xt+1 ← env(at)
Fill in reward: rt ← ln pθ(xt+1 | xt−k:t) + βrexpl

t
Add transition (xt, at, rt, xt+1) to replay buffer.
Train π from replay buffer using any RL algorithm.

In this section, we propose Video Pre-
diction Rewards (VIPER), which learns
complex behaviors by leveraging the log-
likelihoods of pre-trained video predic-
tion models for reward specification. Our
method does not require any ground truth
rewards or action annotations, and only re-
quires videos of desired agent behaviors.
VIPER implements rewards as part of the
environment, and can be paired with any
RL algorithm. We overview the key components of our method below.

3.1 Video Modeling

Likelihood-based video models are a popular paradigm of generative models trained to model the
data distribution by maximizing an exact or lower bound on the log-likelihood of the data. These
models have demonstrated their ability to fit highly multi-modal distributions and produce samples
depicting complex dynamics, motion, and behaviors [40, 18, 17, 45].

Our method can integrate any video model that supports computing likelihoods over the joint
distribution factorized in the following form:

log p(x1:T) =

T∑
t=1

log p(xt | x1:t−1), (1)

where x1:T is the full video consisting of T frames, x1, . . . , xT . When using video models with
limited context length k, it is common to approximate likelihoods of an entire video sequence with
its subsequences of length k as follows:

log p(x1:T) ≈
T∑

t=1

log p(xt | xmax(1,t−k):t−1). (2)

In this paper, we use an autoregressive transformer model based on VideoGPT [47, 36] as our video
generation model. We first train a VQ-GAN [10] to encode individual frames xt into discrete codes
zt. Next, we learn an autoregressive transformer to model the distribution of codes z through the
following maximum likelihood objective:

max
θ

T∑
t=1

Z∑
i=1

log pθ(z
i
t | z1:i−1

t , z1:t−1), (3)

3

0 250K 500K
0

150
300
450
600

DMC (DrQ)

0 5M 10M
0

250
500
750

1000
DMC (Dv3)

0 5M 10M
0
3
6
9

12
Atari (Dv3)

0 500K 1M
0.00
0.15
0.30
0.45
0.60

RLBench (Dv3)

Task Oracle VIPER AMP AMP Multi-Task GAIfO BCO
Figure 3: Aggregate results across 15 DMC tasks, 7 Atari games, and 6 RLBench tasks. DMC results
are provided for DrQ and DreamerV3 (Dv3) RL agents. Atari and RLBench results are reported for
DreamerV3. Atari scores are computed using Human-Normalized Mean.

where zit is the i-th code of the t-th frame, and Z is the total number of codes per frame. Computing
the exact conditional likelihoods pθ(xt | x1:t−1) is intractable, as it requires marginalizing over all
possible combinations of codes. Instead, we use the conditional likelihoods over the latent codes
pθ(zt | z1:t−1) as an approximation. In our experiments, we show that these likelihoods are sufficient
to capture the underlying dynamics of the videos.

Note that our choice of video model does not preclude the use of other video generation models,
such as MaskGIT-based models [48, 45, 13] or diffusion models [18, 40]. However, we opted for an
autoregressive model due to the favorable properties of being able to model complex distributions
while retaining fast likelihood computation. Video model comparisons are performed in Section 4.5.

3.2 Reward Formulation

Given a pretrained video model, VIPER proposes an intuitive reward that maximizes the conditional
log-likelihoods for each transition (xt, at, xt+1) observed by the agent:

rVIPER
t

.
= ln pθ(xt+1 | x1:t). (4)

This reward incentivizes the agent to find the most likely trajectory under the expert video distribution
as modeled by the video model. However, the most probable sequence does not necessarily capture
the distribution of behaviors we want the agent to learn.

For example, when flipping a weighted coin with p(heads = 0.6) 1000 times, typical sequences will
count roughly 600 heads and 400 tails, in contrast to the most probable sequence of 1000 heads that
will basically never be seen in practice [39]. Similarly, the most likely image under a density model
trained on MNIST images is often the image of only background without a digit, despite this never
occurring in the dataset [26]. In the reinforcement learning setting, an additional issue is that solely
optimizing a dense reward such as rVIPER

t can lead to early convergence to local optima.

To overcome these challenges, we take the more principled approach of matching the agent’s trajectory
distribution q(x1:T) to the sequence distribution pθ(x1:T) of the video model by minimizing the
KL-divergence between the two distributions [41, 15]:

KL
[
q(x1:T)

∥∥ p(x1:T)
]
= Eq

[
− ln pθ(x1:T)

]
cross-entropy

− H
[
q(x1:T)

]
entropy

=−
T∑

t=1

[
Eq

[
ln pθ(xt+1

∣∣ x1:t)

rVIPER
t

]
+ H

[
q(xt+1

∣∣ x1:t)
]

exploration term

]
,

(5)

The KL objective shows that for the agent to match the video distribution under the video prediction
model, it has to not only maximize the VIPER reward but also balance this reward while maintaining
high entropy over its input sequences [21]. In the reinforcement learning literature, the entropy bonus
over input trajectories corresponds to an exploration term that encourages the agent to explore and
inhabit a diverse distribution of sequences within the regions of high probability under the video
prediction model. This results in the final reward function that the agent maximizes:

rKL
t

.
= rVIPER

t + β rexplt , (6)
where β determines the amount of exploration. To efficiently compute the likelihood reward, we
approximate the context frames with a sliding window as discussed in Equation 2:

rVIPER
t ≈ ln pθ(xt+1 | xmax(1,t−k):t). (7)

4

Figure 1 shows the process of computing rewards using log probabilities under the video predic-
tion model. VIPER is agnostic to the choice of exploration reward and in this paper we opt for
Plan2Explore [35] and RND [5].

3.3 Data Curation

In this work, we explore whether VIPER provides adequate reward signal for learning low-level
control. We utilize the video model likelihoods provided by an autoregressive video prediction
model pre-trained on data from a wide variety of environments. We curate data by collecting expert
video trajectories from task oracles and motion planning algorithms with access to state information.
Fine-tuning large text-conditioned video models [33, 45, 40] on expert videos would likely lead to
improved generalization performance beyond the curated dataset, and would make for an interesting
future research direction. We explore the favorable generalization capabilities of video models trained
on small datasets, and explore how this leads to more general reward functions in Section 4.3.

4 Experiments

We evaluate VIPER on 28 different tasks across the three domains shown in Figure 2. We utilize 15
tasks from the DeepMind Control (DMC) suite [44], 7 tasks from the Atari Gym suite [4], and 6
tasks from the Robot Learning Benchmark (RLBench) [20]. We compare VIPER agents to variants
of Adversarial Motion Priors (AMP) [30], which uses adversarial training to learn behaviors from
reward-free and action-free expert data. All agents are trained using raw pixel observations from
the environment, with no access to state information or task rewards. In our experiments, we aim to
answer the following questions:

1. Does VIPER provide an adequate learning signal for solving a variety of tasks? (Section 4.2)
2. Do video models trained on many different tasks still provide useful rewards? (Section 4.2)
3. Can the rewards generalize to novel scenarios where no expert data is available? (Section 4.3)
4. How does the video model data quality and quantity affect the learned rewards? (Section 4.4)
5. What implementation details matter when using video model likelihoods as rewards? (Section 4.5)

4.1 Video Model Training Details

Training data To collect expert videos in DMC and Atari tasks, Task Oracle RL agents are trained
until convergence with access to ground truth state information and task rewards. After training,
videos of the top k episodes out of 1000 episode rollouts for each task are sampled as expert videos,
where k = 50 and 100 for DMC and Atari, respectively. For RLBench, a sampling-based motion
planning algorithm with access to full state information is used to gather 100 demos for each task,
where selected tasks range from “easy” to “medium”.

T = 0 T = 16 T = 32 T = 48 T = 64

Figure 4: Video model rollouts for 3 different
evaluation environments.

Video model training We train a single autoregres-
sive video model for each suite of tasks. Example
images for each suite are shown in Appendix A.5.
For DMC, we train a single VQ-GAN across all
tasks that encodes 64× 64 images to 8× 8 discrete
codes. Similarly for RLBench and Atari, we train
VQ-GANs across all tasks within each domain, but
encode 64 × 64 images to 16 × 16 discrete codes.
In practice, the level of VQ compression depends
on the visual complexity of the environment – more
texturally simple environments (e.g., DMC) allow for
higher levels of spatial compression. We follow the
original VQ-GAN architecture [10], consisting of a
CNN encoder and decoder. We train VQ-GAN with a batch size of 128 and learning rate 10−4 for
200k iterations.

To train our video models, we encode each frame of the trajectory and stack the codes temporally to
form an encoded 3D video tensor. Similar to VideoGPT [47], the encoded VQ codes for all video

5

frames are jointly modeled using an autoregressive transformer in raster scan order. For DMC and
Atari, we train on 16 frames at a time with a one-hot label for task conditioning. For RLBench,
we train both single-task and multi-task video models on 4 frames with frame skip 4. We add the
one-hot task label for the multi-task model used in our cross-embodiment generalization experiments
in Section 4.3. We perform task conditioning identical to the class conditioning mechanism in
VideoGPT, with learned gains and biases specific to each task ID for each normalization layer.

Figure 4 shows example video model rollouts for each domain. In general, our video models are able
to accurately capture the dynamics of each environment to produce probable futures. Further details
on model architecture and hyperparameters can be found in Appendix A.2. All models are trained on
TPUv3-8 instances which are approximately similar to 4 Nvidia V100 GPUs.

4.2 Video Model Likelihoods as Rewards for Reinforcement Learning

T=0 T=200T=50 T=100

R
ef

er
en

ce
O

O
D

0 250 500
Sequence Step

150

100

50
rVI

PE
R

0 500 1K
Task Return

1.5
1.0
0.5

VI
PE

R
Re

tu
rn 1e5

Reference OOD (Random)
Figure 5: VIPER incentivizes the agent
to maximize trajectory likelihood under the
video model. As such, it provides high re-
wards for reference (expert) sequences, and
low rewards for unlikely behaviors. Mean
rewards rVIPER and returns are computed
across 40 trajectories.

To learn behaviors from expert videos, we provide
reward signals using Equation 6 in VIPER and the
discriminator error in AMP. Both VIPER and AMP
are agnostic to the choice of RL algorithm; but, in this
paper, we evaluate our approach and baselines with
two popular RL algorithms: DrQ [22] and Dream-
erV3 [16]. We use Random Network Distillation
[5] (model-free) as the exploration objective for DrQ,
and Plan2Explore [35] (model-based) for DreamerV3.
Hyperparameters for each choice of RL algorithm are
shown in Appendix A.3. We compare VIPER to two
variants of the AMP algorithm: the single-task vari-
ant where only expert videos for the specific task are
provided to the agent, and the multi-task case where
expert videos for all tasks are provided to the agent.

As outlined in Algorithm 1, we compute Equation 6
for every environment step to label the transition with
a reward before adding it to the replay buffer for
policy optimization. In practice, batching Equation 6
across multiple environments and leveraging parallel
likelihood evaluation leads to only a small decrease
in training speed. DMC agents were trained using 1
Nvidia V100 GPU, while Atari and RLBench agents
were trained using 1 Nvidia A100 GPU.

We first verify whether VIPER provides meaningful rewards aligned with the ground truth task
rewards. Figure 5 visualizes the ground truth task rewards and our log-likelihood rewards (Equation 7)
for a reference (expert) trajectory and a random out-of-distribution trajectory. In the reward curves
on the left, VIPER starts to predict high rewards for the expert transitions once the transitions
becomes distinguishable from a random trajectory, while it consistently outputs low rewards for
out-of-distribution transitions. The return plot on the right clearly shows positive correlation between
returns of the ground truth reward and our proposed reward.

Then, we measure the task rewards when training RL agents with predicted rewards from VIPER and
baselines and report the aggregated results for each suite and algorithm in Figure 3. The full results
can be found in Appendix A.4.

In DMC, VIPER achieves near expert-level performance from pixels with our video prediction
rewards alone. Although VIPER slightly underperforms Task Oracle, this is surprising as the Task
Oracle uses full state information along with dense task rewards. VIPER outperforms both variants
of AMP. Worth noting is the drastic performance difference between the single-task and multi-task
AMP algorithms. This performance gap can possibly be attributed to mode collapse, whereby the
discriminator classifies all frames for the current task as fake samples, leading to an uninformative
reward signal for the agent. Likelihood-based video models, such as VIPER, are less susceptible to
mode collapse than adversarial methods.

6

In Atari, VIPER approaches the performance of the Task Oracle trained with the original sparse task
reward, and outperforms the AMP baseline. Shown in Figure 6, we found that masking the scoreboard
in each Atari environment when training the video model improved downstream RL performance.

No Mask

Mask
0 5M 10M

0.0

0.5

1.0

Task Oracle
Mask
No Mask

Figure 6: RL training curves on Atari
Pong when using VIPER trained with or
without masking the scoreboard.

Since the video model learns to predict all aspects of
the data distribution, including the scoreboard, it tends
to provide noisier reward signal during policy training
when the agent encounters out-of-distributions scores not
seen by the video model. For example, expert demos for
Pong only contain videos where the player scores and the
opponent’s score is always zero. During policy training,
we observe that the Pong agent tends to exhibit more
erratic behaviors as soon as the opponent scores at least
one point, whereas when masking the scoreboard, learned
policies are generally more stable. These results suggest
the potential benefits of finetuning large video models
on expert demos to learn more generalizable priors, as
opposed to training from scratch.

For RLBench, VIPER outperforms the Task Oracle because RLBench tasks provide very sparse
rewards after long sequences of actions, which pose a challenging objective for RL agents. VIPER
instead provides a dense reward extracted from the expert videos, which helps learn these challenging
tasks. When training the video model, we found it beneficial to train at a reduced frame rate,
accomplished by subsampling video sequences by a factor of 4. Otherwise, we observed the
video model would assign high likelihoods to stationary trajectories, resulting in learned policies
rarely moving and interacting with the scene. We hypothesize that this may be partially due to
the high control frequency of the environment, along with the initial slow acceleration of the
robot arm in demonstrations, resulting in very little movement between adjacent frames. When
calculating likelihoods for reward computation, we similarly input observations strided by time, e.g.,
p(xt | xt−4, xt−8, . . .).

4.3 Generalization of Video Prediction Rewards

Prior works in the space of large, pretrained generative models have shown a powerful ability
to generalize beyond the original training data, demonstrated by their ability to produce novel
generations (e.g., unseen text captions for image or video generation [33, 45, 40]) as well as learn
more generalizable models from limited finetuning data [8, 46]. Both capabilities provide promising
directions for extending large video generation models to VIPER, where we can leverage text-video
models to capture priors specified by text commands, or finetune on a small set of demonstrations to
learn a task-specific prior that better generalizes to novel states.

Tr
ai
n

Tr
ai
n

O
O
D

Figure 7: Sampled video predictions for in distribution reference videos (Train) and an OOD
arm/task combination (OOD). The video model displays cross-embodiment generalization to arm/task
combination not observed in the training data. Video model generalization can enable specifying new
tasks where no reference data is available.

7

0 0.5M 1M
Training Step

0.0

0.5

Su
cc

es
s

0 25 50
Sequence Step
10

5

rVI
PE

R

Ref
Rand

Figure 8: (Left) Training curve for RL agent
trained with VIPER on OOD task. (Right) Task-
conditional likelihood for reference and random
trajectory for an OOD task.

In this section, we seek to understand how this
generalization can be used to learn more gen-
eral reward functions. We train a model on two
datasets of different robot arms, and evaluate
the cross-embodiment generalization capabili-
ties of the model. Specifically, we gather demon-
strations for 23 tasks on the Rethink Robotics
Sawyer Arm, and demonstrations for 30 tasks
on the Franka Panda robotic arm, where only 20
tasks are overlapping between arms. We then
train a task-conditioned autoregressive video
model on these demonstration videos and evaluate the video model by querying unseen arm/task
combinations, where a single initial frame is used for open loop predictions.

Sample video model rollouts for in distribution training tasks and an OOD arm/task combination
are shown in Figure 7. Even though the video model was not directly trained on demonstrations
of the Franka Panda arm to solve the saucepan task in RLBench, it is able to generate reasonable
trajectories for the arm and task combination. Figure 8 further validates this observation by assigning
higher likelihood to expert videos (Ref) compared to random robot trajectories (Rand). We observe
that these generalization capabilities also extend to downstream RL, where we use our trained video
model with VIPER to learn a policy for the Franka Robot arm to solve an OOD task without requiring
demos for that specific task and arm combination. Figure 21 further extends this analysis to include
more in distribution and out of distribution tasks. These results demonstrate a promising direction for
future work in applying VIPER to larger scale video models that will be able to better generalize and
learn desired behaviors only through a few demonstrations.

4.4 Impact of Data Quality and Quantity

Learning from sub-optimal data is an important feature of learned reward models, as large-scale video
data may often contain suboptimal solutions to a given task. As such, we evaluate VIPER’s ability to
learn rewards from sub-optimal data.

We train video models with suboptimal (good) data, which has 50-75% returns of the expert data.
In Figure 9, VIPER learns the suboptimal behaviors provided in the suboptimal video data. This
suboptimal VIPER can be still useful if combined with a sparse task reward, comparable to an agent
learned from dense task rewards.

Additionally, we evaluate how VIPER performs under different video dataset sizes. As shown in
Figure 10, VIPER can learn a meaningful reward function only with one expert trajectory, although
adding more videos quickly improves the performance of VIPER, with diminishing returns after 50
trajectories.

0 5M 10M
0
3
6
9

12
Atari (Dv3)

Extr Only
VIPER (Expert)

Extr + VIPER (Good)
VIPER (Good)

Figure 9: Atari performance with VIPER
models trained on suboptimal data.

0 5M 10M
0

250
500
750

1000
DMC (Dv3)

N=100*
N=50
N=25
N=10
N=1

Figure 10: DMC performance with VIPER
trained on different dataset sizes, where N is
the number of expert trajectories. *Original
dataset size.

4.5 Ablation Studies

In this section, we study the contributions of various design decisions when using video prediction
models as rewards: (1) how to weight the exploration objective, (2) which video model to use, and
(3) what context length to use. Ablation studies are performed across DMC tasks.

8

0 4M 8M
0

500

1000
Exploration

= 1.0
= 0.5
= 0.0

0 4M 8M
0

500

1000
Video Model

VideoGPT
BYOL
MaskGIT

0 4M 8M
0

500

1000
Context Length

k = 16
k = 8
k = 2

Figure 11: Effect of exploration reward term, video model choice, and context length on downstream
RL performance. An equally weighted exploration reward term and longer video model context leads
to improved performance. MaskGIT substantially underperforms VideoGPT as a choice of video
model. The BYOL model performs moderately due to the deterministic architecture not properly
handling multi-modality.

Exploration objective As discussed in subsection 3.2, an exploration objective may help the RL
agent learn a distribution of behaviors that closely matches the distribution of the original data and
generalizes, while preventing locally optimal solutions. In Figure 11, we ablate the β parameter
introduced in Equation 6 using a VideoGPT-like model as the VIPER backbone. β = 0 corresponds
to no exploration objective, whereas β = 1 signifies equal weighting between rVIPER and rexpl. We
ablate the exploration objective using the Plan2Explore [35] reward, which provides the agent with a
reward proportional to the disagreement between an ensemble of one-step dynamics models. Using
no exploration objective causes the policy’s behavior to collapse, while increasing the weight of the
exploration objective leads to improved performance.

Video model Although our experiments focus on using an autoregressive VideoGPT-like model
to compute likelihoods, VIPER generally allows for any video model that supports computing
conditional likelihoods or implicit densities.

Figure 11 shows additional ablations replacing our VideoGPT model with a similarly sized
MaskGIT [6] model, where frames are modeled with MaskGIT over space, and autoregressive
over time. MaskGIT performs substantially worse than the VideoGPT model, which is possibly
due to noisier likelihoods from parallel likelihood computation. In addition, while VideoGPT only
requires 1 forward pass to compute likelihood, MaskGIT requires as many as 8 forward passes on the
sequence of tokens for a frame, resulting in an approximately 8× slowdown in reward computation,
and 2.5× in overall RL training.

Finally, we evaluate the performance of a video model that computes implicit densities using a
negative distance metric between online predictions and target encodings with a recurrent Bootstrap
Your Own Latent (BYOL) architecture [12, 11]. We refer the reader to Appendix A.1 for more
details about the implementation. While BYOL outperforms MaskGIT in Figure 11, its deterministic
recurrent architecture is unable to predict accurate embeddings more than a few steps into the future.
This limits the ability of the learned reward function to capture temporal dynamics. We observe that
agents trained with BYOL often end up in a stationary pose, which achieves high reward from the
BYOL model.

Context length The context length k of the video model is an important choice in determining how
much history to incorporate into the conditional likelihood. At the limit where k = 0, the reward is
the unconditional likelihood over each frame. Such a choice would lead to stationary behavior on
many tasks. Figure 11 shows that increasing the context length can help improve performance when
leveraging a VideoGPT-based model for downstream RL tasks, subject to diminishing returns. We
hypothesize that a longer context length may help for long-horizon tasks.

9

5 Conclusion

This paper presents Video Prediction Rewards (VIPER), a general algorithm that enables agents
to learn behaviors from videos of experts. To achieve this, we leverage a simple pre-trained au-
toregressive video model to provide rewards for a reinforcement learning agent. These rewards
are parameterized as the conditional probabilities of a particular frame given a context past of
frames. In addition, we include an entropy maximization objective to ensure that the agent learns
diverse behaviors which match the video model’s trajectory distribution. VIPER succeeds across
3 benchmarks and 28 tasks, including the DeepMind Control Suite, Atari, and the Reinforcement
Learning Benchmark. We find that simple data augmentation techniques can dramatically improve
the effectiveness of VIPER. We also show that VIPER generalizes to out-of-distribution tasks for
which no demonstrations were provided. Moreover, VIPER can learn reward functions for a wide
variety of tasks using a single video model, outperforming AMP [30], which suffers from mode
collapse as the diversity of the expert videos increases.

Limitations of our work include that VIPER is trained using in-domain data of expert agents, which
is not a readily-available data source in the real world. Additionally, video prediction rewards trained
on stochastic data may lead the agent to prefer states that minimize the video model’s uncertainty,
which may lead to sub-optimal behaviors. This challenge may be present for cases where either the
environment is stochastic or the demonstrator provides noisy demonstrations. Moreover, selecting
the right trade-off between VQCode size and context length has a significant impact on the quality of
the learned rewards, with small VQCodes failing to model important components of the environment
(e.g., the ball in Atari Breakout) and short context lengths leading to myopic behaviors which results
in poor performance. Exploring alternative video model architectures for VIPER would likely be a
fruitful research direction.

To improve the generalization capabilities of VIPER, larger pre-trained video models are necessary.
Future work will explore how fine-tuning or human preferences can be used to improve video
prediction rewards. Using text-to-video models remain another interesting direction for future
work in extracting text-conditioned task-specific priors from a pretrained video model. In addition,
extending this line of work to leverage Video Diffusion Models [18] as video prediction rewards may
lead to interesting outcomes.

10

Acknowledgments and Disclosure of Funding

This work was supported in part by an NSF Fellowship, NSF NRI #2024675, ONR MURI N00014-
22-1-2773, Komatsu, and the Vanier Canada Graduate Scholarship. We also thank Google TPU
Research Cloud and Cirrascale (https://cirrascale.com) for providing compute resources.

References

[1] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning.
In International Conference on Machine Learning, 2004.

[2] Bowen Baker, Ilge Akkaya, Peter Zhokhov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by watching
unlabeled online videos. In Advances in Neural Information Processing Systems, 2022.

[3] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

[4] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[5] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random
network distillation. In International Conference on Learning Representations, 2019.

[6] Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked
generative image transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 11315–11325, 2022.

[7] Soumith Chintala, Emily Denton, Martin Arjovsky, and Michael Mathieu. How to train a gan?
tips and tricks to make gans work. https://github.com/soumith/ganhacks, 2020.

[8] Yilun Dai, Mengjiao Yang, Bo Dai, Hanjun Dai, Ofir Nachum, Josh Tenenbaum, Dale Schuur-
mans, and Pieter Abbeel. Learning universal policies via text-guided video generation. arXiv
preprint arXiv:2302.00111, 2023.

[9] Andreas Doerr, Christian Daniel, Martin Schiegg, Nguyen-Tuong Duy, Stefan Schaal, Marc
Toussaint, and Trimpe Sebastian. Probabilistic recurrent state-space models. In International
conference on machine learning, pages 1280–1289. PMLR, 2018.

[10] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution
image synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 12873–12883, 2021.

[11] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. In Advances in
neural information processing systems, volume 33, pages 21271–21284, 2020.

[12] Zhaohan Guo, Shantanu Thakoor, Miruna Pîslar, Bernardo Avila Pires, Florent Altché, Corentin
Tallec, Alaa Saade, Daniele Calandriello, Jean-Bastien Grill, Yunhao Tang, et al. Byol-explore:
Exploration by bootstrapped prediction. In Advances in neural information processing systems,
volume 35, pages 31855–31870, 2022.

[13] Agrim Gupta, Stephen Tian, Yunzhi Zhang, Jiajun Wu, Roberto Martín-Martín, and Li Fei-Fei.
Maskvit: Masked visual pre-training for video prediction. arXiv preprint arXiv:2206.11894,
2022.

[14] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and
James Davidson. Learning latent dynamics for planning from pixels. In International conference
on machine learning, pages 2555–2565. PMLR, 2019.

11

https://cirrascale.com
https://github.com/soumith/ganhacks

[15] Danijar Hafner, Pedro A Ortega, Jimmy Ba, Thomas Parr, Karl Friston, and Nicolas Heess.
Action and perception as divergence minimization. arXiv preprint arXiv:2009.01791, 2020.

[16] Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

[17] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko,
Diederik P Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High
definition video generation with diffusion models. arXiv preprint arXiv:2210.02303, 2022.

[18] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. In Advances in Neural Information Processing Systems, 2022.

[19] Andrew Jaegle, Yury Sulsky, Arun Ahuja, Jake Bruce, Rob Fergus, and Greg Wayne. Imitation
by predicting observations. In International Conference on Machine Learning, pages 4665–4676.
PMLR, 2021.

[20] Stephen James, Zicong Ma, David Rovick Arrojo, and Andrew J. Davison. Rlbench: The robot
learning benchmark & learning environment. IEEE Robotics and Automation Letters, 2020.

[21] Edwin T Jaynes. Information theory and statistical mechanics. Physical review, 106(4):620,
1957.

[22] Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regu-
larizing deep reinforcement learning from pixels. In International Conference on Learning
Representations, 2021.

[23] Youngwoon Lee, Andrew Szot, Shao-Hua Sun, and Joseph J. Lim. Generalizable imitation
learning from observation via inferring goal proximity. In Neural Information Processing
Systems, 2021.

[24] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:
Tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

[25] YuXuan Liu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Imitation from observation:
Learning to imitate behaviors from raw video via context translation. In IEEE International
Conference on Robotics and Automation, 2018.

[26] Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, and Balaji Lakshminarayanan.
Do deep generative models know what they don’t know? In International Conference on
Learning Representations, 2019.

[27] Andrew Y. Ng and Stuart J. Russell. Algorithms for inverse reinforcement learning. In
International Conference on Machine Learning, 2000.

[28] Scott Niekum, Sarah Osentoski, George Konidaris, Sachin Chitta, Bhaskara Marthi, and An-
drew G Barto. Learning grounded finite-state representations from unstructured demonstrations.
The International Journal of Robotics Research, 34(2):131–157, 2015.

[29] Deepak Pathak, Parsa Mahmoudieh, Michael Luo, Pulkit Agrawal, Dian Chen, Fred Shentu,
Evan Shelhamer, Jitendra Malik, Alexei A. Efros, and Trevor Darrell. Zero-shot visual imitation.
In International Conference on Learning Representations, 2018.

[30] Xue Bin Peng, Ze Ma, Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa. AMP: adversarial
motion priors for stylized physics-based character control. ACM Transactions on Graphics
(TOG), 40(4):1–20, 2021.

[31] Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In Advances in
Neural Information Processing Systems, pages 305–313, 1989.

[32] Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave, Tom
Wiele, Vlad Mnih, Nicolas Heess, and Jost Tobias Springenberg. Learning by playing solving
sparse reward tasks from scratch. In International conference on machine learning, pages
4344–4353. PMLR, 2018.

12

[33] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed
Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi, Rapha Gontijo Lopes,
Tim Salimans, Jonathan Ho, David J Fleet, and Mohammad Norouzi. Photorealistic text-to-
image diffusion models with deep language understanding. In Advances in Neural Information
Processing Systems, 2022.

[34] Karl Schmeckpeper, Oleh Rybkin, Kostas Daniilidis, Sergey Levine, and Chelsea Finn. Rein-
forcement learning with videos: Combining offline observations with interaction. In Conference
on Robot Learning, 2021.

[35] Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak
Pathak. Planning to explore via self-supervised world models. In International Conference on
Machine Learning, 2020.

[36] Younggyo Seo, Kimin Lee, Fangchen Liu, Stephen James, and Pieter Abbeel. Harp: Autore-
gressive latent video prediction with high-fidelity image generator. In 2022 IEEE International
Conference on Image Processing (ICIP), pages 3943–3947. IEEE, 2022.

[37] Pierre Sermanet, Kelvin Xu, and Sergey Levine. Unsupervised perceptual rewards for imitation
learning. Robotics: Science and Systems, 2017.

[38] Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan Schaal, and
Sergey Levine. Time-contrastive networks: Self-supervised learning from video. In IEEE
International Conference on Robotics and Automation, pages 1134–1141, 2018.

[39] Claude Elwood Shannon. A mathematical theory of communication. ACM SIGMOBILE mobile
computing and communications review, 5(1):3–55, 2001.

[40] Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu, Harry
Yang, Oron Ashual, Oran Gafni, Devi Parikh, Sonal Gupta, and Yaniv Taigman. Make-a-video:
Text-to-video generation without text-video data. In International Conference on Learning
Representations, 2023.

[41] Emanuel Todorov. Efficient computation of optimal actions. Proceedings of the national
academy of sciences, 106(28):11478–11483, 2009.

[42] Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. In
International Joint Conferences on Artificial Intelligence, 2018.

[43] Faraz Torabi, Garrett Warnell, and Peter Stone. Generative adversarial imitation from observa-
tion. arXiv preprint arXiv:1807.06158, 2018.

[44] Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel,
Tom Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm_control: Software and tasks
for continuous control. Software Impacts, 6:100022, 2020. ISSN 2665-9638.

[45] Ruben Villegas, Mohammad Babaeizadeh, Pieter-Jan Kindermans, Hernan Moraldo, Han Zhang,
Mohammad Taghi Saffar, Santiago Castro, Julius Kunze, and Dumitru Erhan. Phenaki: Variable
length video generation from open domain textual description. arXiv preprint arXiv:2210.02399,
2022.

[46] Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan
Du, Andrew M. Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In
International Conference on Learning Representations, 2022.

[47] Wilson Yan, Yunzhi Zhang, Pieter Abbeel, and Aravind Srinivas. Videogpt: Video generation
using vq-vae and transformers. arXiv preprint arXiv:2104.10157, 2021.

[48] Lijun Yu, Yong Cheng, Kihyuk Sohn, José Lezama, Han Zhang, Huiwen Chang, Alexander G
Hauptmann, Ming-Hsuan Yang, Yuan Hao, Irfan Essa, et al. Magvit: Masked generative video
transformer. arXiv preprint arXiv:2212.05199, 2022.

[49] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy
inverse reinforcement learning. In Association for the Advancement of Artificial Intelligence,
2008.

13

[50] Konrad Zolna, Scott Reed, Alexander Novikov, Sergio Gomez Colmenarej, David Budden,
Serkan Cabi, Misha Denil, Nando de Freitas, and Ziyu Wang. Task-relevant adversarial imitation
learning. In Conference on Robot Learning, 2020.

A Appendix

A.1 Bootstrap Your Own Latent Details

Model Architecture. The BYOL model used in this work derives from the recurrent BYOL-Explore
architecture proposed in [12], with a few modifications. Namely Guo et al. propose BYOL-Explore,
a multi-step predictive latent world model. The BYOL-Explore architecture trains an online network
using targets generated by an exponential moving average target network on future observations.
Observations ot are first encoded into an observation representation fθ(ot). Online predictions are
computed by then encoding the observation representation using a closed-loop RNN hc

θ(fθ(ot)).
Guo et al. also pass actions into the closed loop RNN, but we wish to learn an action-free reward
mechanism that can be trained solely from videos. At each timestep, the carry bt from the closed loop
RNN is then fed into an open-loop RNN ho

θ which predicts open-loop representations K steps into
the future: (bt,k ∈ RM)K−1

k=1 , where bt,k = ho
θ(bt,k−1). The original BYOL-Explore architecture

feeds actions at+k+1 as inputs to the open loop cell ho
θ as well, but we opt to omit these inputs for

the same reason outlined above.

Given the deterministic RNN architecture used to predict online targets, omitting the action condi-
tioning may lead to poor performance in multi-modal or stochastic environments. A more principled
approach would utilize a probabilistic recurrent state space model [9, 14] to account for the multi-
modality of futue states. We leave this approach to future work.

Finally, a predictor head gθ(bt,k) outputs online predictions. We refer the reader to [12] for a figure
of the outlined architecture.

The target network is an observation encoder fϕ whose parameters are an exponential moving average
of fθ. The loss function for the online network is then defined as:

LBYOL-Explore(θ, t, k) =

∥∥∥∥ gθ(bt,k)

∥gθ(bt,k)∥2
− sg

(
fϕ(ot+k)

∥fϕ(ot+k)∥2

)∥∥∥∥2
2

,

LBYOL-Explore(θ) =
1

B(T − 1)

T−2∑
t=0

1

K(t)

K(t)∑
k=1

LBYOL-Explore(θ, t, k),

where K(t) = min(K,T − 1− t) is the valid open-loop horizon for a trajectory of length T and sg
is the stop-gradient operator.

Computing Rewards. The uncertainty associated with the transition (ot, at, ot+1) is the sum of the
corresponding prediction losses:

ℓt =
∑

p+q=t+1

LBYOL-Explore(θ, j, p, q),

where 0 ≤ p ≤ T − 2, 1 ≤ q ≤ K and 0 ≤ t ≤ T − 2. This accumulates all the losses corresponding
to the latent dynamics model uncertainties relative to the observation ot+1. For our purposes, we
calculate rewards as rt = −ℓt, which is equivalent to negating the reward used in the original
BYOL-Explore formulation, and can be interpreted as negating the exploration objective to ensure
that the agent stays close to the trajectory distribution found in the original dataset.

14

A.2 Video Model Hyperparameters

Table 1: Hyperparameters and training details for all VQ-GAN models

DMC Atari
RLBench

(single + multi task)

Input size 64× 64× 3 64× 64× 3 64× 64× 3

Latent size 8× 8 16× 16 16× 16

β (commitment loss coefficient) 0.25 0.25 0.25
Batch size 128 128 128
Learning rate 10−4 10−4 10−4

Learning rate schedule constant constant constant
Training steps 200k 200k 200k
Base channels 128 128 128
Ch mult [1, 1, 2, 2] [1, 2, 2] [1, 2, 2]
Num res blocks 1 1 2
Codebook size 1024 1024 1024
Codebook dimension 64 64 64
Perceptual loss weight 0.1 0.1 0.1
Disc base features 32 32 32
Disc gradient penalty weight 108 108 108

Disc max hidden feature size 512 512 512
Disc mbstd group size 4 4 4
Disc mbstd num features 1 1 1
Disc loss weight 0.1 0.1 0.1

Table 2: Hyperparameters and training details for all VideoGPT and MaskGit models

DMC Atari
RLBench

(single task)
RLBench

(multi-task)

Sequence length 16 16 4 4
Frame skip 1 1 4 4
Latent size 8× 8 16× 16 16× 16 16× 16

Number of classes 16 8 n/a 34
Batch size 32 32 32 32
Learning rate 10−4 10−4 10−4 10−4

Learning rate schedule constant constant constant constant
Training steps 500k 500k 500k 500k
Adam (β1, β2) (0.9, 0.999) (0.9, 0.999) (0.9, 0.999) (0.9, 0.999)
Hidden dim 256 512 256 512
Feedforward dim 1024 2048 1024 2048
Number of heads 8 8 8 8
Number of layers 8 8 8 8
Dropout 0 0 0 0

15

A.3 Reinforcement Learning Hyperparameters

Table 3: Hyperparameters and training details for DreamerV3

DMC Atari
RLBench

(single task)
RLBench

(multi-task)

General
Replay Capacity (FIFO) 106 106 106 106

Start learning (prefill) 0 0 0 0
Batch Size 16 16 16 16
Batch length 64 64 64 64
MLP Size 2× 512 4× 1024 4× 1024 4× 1024

Activation LayerNorm + swish

World Model
RSSM Size 512 4096 4096 4096
Number of Latents 32 32 32 32
Classes per Latent 32 32 32 32
KL Balancing 0.667 0.667 0.667 0.667

Actor Critic
Imagination Horizon 15 15 15 15
Discount 0.995 0.995 0.995 0.995
Return Lambda 0.95 0.95 0.95 0.95
Target Update Interval 50 50 50 50

All Optimizers
Gradient Clipping 100 100 100 100
Learning Rate 10−4 10−4 10−4 10−4

Adam epsilon 10−6 10−6 10−6 10−6

Plan2Explore
Ensemble size 10 10 10 10

16

Table 4: Hyperparameters and training details for DrQ

DMC

Actor Critic
MLP Size 256× 256

CNN Features 32× 64× 128× 256

CNN Filters 3× 3× 3× 3

CNN Strides 2× 2× 2× 2

Learning Rate 3e− 4

Discount 0.99

Number of Critics 2
τ 0.005
Init Temperature 0.1
Augmentations Random crop
Random Network Distillation
RND CNN Features 32× 64× 64

RND MLP Size 512× 512

RND learning rate 3e− 4

RND Exploration Weight 1

17

A.4 Environment Training Curves

0 1M 2M

0.0
0.2
0.4
0.6

Lamp on

0 1M 2M
0.25
0.00
0.25
0.50
0.75

Push button

0 1M 2M
0.2
0.0
0.2
0.4
0.6

Reach target

0 1M 2M

0.0
0.4
0.8
1.2

Take lid off saucepan

0 1M 2M

0.0
0.4
0.8
1.2

Take umbrella out of
 umbrella stand

0 1M 2M

0.0
0.3
0.6
0.9

Toilet seat down

Task Oracle VIPER AMP
Figure 12: Results across 6 Reinforcement Learning Benchmark tasks, with mean and standard
deviation computed across 3 seeds.

0 5M 10M
0.0
1.5
3.0
4.5

Assault

0 5M 10M
0

15
30
45
60

Atlantis

0 5M 10M
8
4
0
4
8

Boxing

0 5M 10M
0.0
0.3
0.6
0.9
1.2

Freeway

0 5M 10M
0.0
1.5
3.0
4.5
6.0

Kangaroo

0 5M 10M
0.0
0.3
0.6
0.9
1.2

Pong

0 5M 10M
0.0
0.4
0.8
1.2

Zaxxon

Task Oracle VIPER AMP
Figure 13: Results across 7 Atari tasks. Scores computed using Human-Normalized Mean across 3
seeds.

18

0 5M 10M 15M

250
500
750

1000
cartpole_balance

0 5M 10M 15M
0

250
500
750

cartpole_swingup

0 5M 10M 15M
0

250
500
750

1000
cheetah_run

0 5M 10M 15M

0
300
600
900

cup_catch

0 5M 10M 15M

0
300
600
900

1200
finger_spin

0 5M 10M 15M

0
300
600
900

finger_turn_hard

0 5M 10M 15M

0
300
600
900

hopper_stand

0 5M 10M 15M

0
250
500
750

1000
pendulum_swingup

0 5M 10M 15M

0
300
600
900

pointmass_easy

0 5M 10M 15M

0
250
500
750

1000
pointmass_hard

0 5M 10M 15M
0

250
500
750

1000
quadruped_run

0 5M 10M 15M
0

250
500
750

1000
quadruped_walk

0 5M 10M 15M

0
300
600
900

1200
reacher_easy

0 5M 10M 15M

0
300
600
900

reacher_hard

0 5M 10M 15M
0

250
500
750

1000
walker_walk

Task Oracle VIPER AMP AMP Multi-Task
Figure 14: Results across 15 DeepMind Control Suite tasks, with mean and standard deviation
computed across 3 seeds. AMP runs were stopped early due to poor performance.

19

A.5 Training Environments

Figure 15: A single autoregressive video model is trained on 30 tasks for the Franka Panda and 23
tasks for the ReThink Robotics Sawyer, using 16 × 16 VQCodes and a context length of 4, with
frame skip 4.

Figure 16: A single task-conditioned autoregressive video model is trained on 15 DeepMind Control
Tasks, using 8× 8 VQCodes and a context length of 16.

20

Figure 17: A single autoregressive video model is trained on 7 Atari tasks, using 16× 16 VQCodes
and a context length of 16.

21

A.6 Visualizing Video Prediction Uncertainty

Video model uncertainty can be visualized by upsampling the conditional likelihoods over VQCodes.
Since VQCodes tend to model local features, this provides a useful tool for analyzing which regions
of the image the video model is uncertain about. We visualize video prediction uncertainty for three
environments below:

RG
B

0 20 40 60 80 100 120

rVI
PE

R

(a) Reference Trajectory

RG
B

0 20 40 60 80 100 120

rVI
PE

R

(b) Random Trajectory

Figure 18: Uncertainty visualized for a reference trajectory (top) and a random trajectory (bottom).
Brighter values correspond to higher likelihoods. For the random trajectory, the video model assigns
lower likelihoods to regions of the image containing the ball. This is especially true for random
trajectories, where the video model, trained solely on expert trajectories, cannot accurately predict
what happens when the agent plays sub-optimally.

RG
B

0 20 40 60 80 100 120

rVI
PE

R

Figure 19: Uncertainty visualized for a random trajectory from the dmc cartpole balance task. Brighter
values correspond to higher likelihoods.

22

RG
B

0 20 40 60 80 100

rVI
PE

R

(a) Reference Trajectory

RG
B

0 20 40 60 80 100

rVI
PE

R

(b) Random Trajectory

Figure 20: Uncertainty visualized for a reference trajectory (top) and a random trajectory (bottom).
Brighter values correspond to higher likelihoods. Notice the high uncertainty over the position of
objects on the table for the first frame. This corresponds to the unconditional likelihood (with no
context). Since the position of the saucepan is randomized for every episode, the video model assigns
some uncertainty to this initial configuration. For the random trajectory, there is high uncertainty
assigned to the position of the arm since the video model has not seen trajectories that display poor
behavior.

23

A.7 VIPER Out-of-distribution Analysis

Expert*

24 In-Dist Tasks

Expert

7 OOD Tasks

Suboptimal

24 In-Dist Tasks

Suboptimal

7 OOD Tasks

Random
Pixels

0.0
0.5
1.0
1.5
2.0

rVI
PE

R
1e3

Figure 21: Predicted rVIPER on various RLBench tasks. We evalute 10 trajectories for each task.
*Training data for the VIPER model.

24

	Introduction
	Related Work
	Video Prediction Rewards
	Video Modeling
	Reward Formulation
	Data Curation

	Experiments
	Video Model Training Details
	Video Model Likelihoods as Rewards for Reinforcement Learning
	Generalization of Video Prediction Rewards
	Impact of Data Quality and Quantity
	Ablation Studies

	Conclusion
	Appendix
	Bootstrap Your Own Latent Details
	Video Model Hyperparameters
	Reinforcement Learning Hyperparameters
	Environment Training Curves
	Training Environments
	Visualizing Video Prediction Uncertainty
	VIPER Out-of-distribution Analysis

