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Fig. 1. Our framework enables physically simulated characters to learn versatile and reusable skill embeddings from large unstructured motion datasets,
which can then be applied to produce life-like behaviors for new tasks. Here, a character is utlizing behaviors from a learned skill embedding in order to run to
a target and knock it over.

The incredible feats of athleticism demonstrated by humans are made pos-
sible in part by a vast repertoire of general-purpose motor skills, acquired
through years of practice and experience. These skills not only enable hu-
mans to perform complex tasks, but also provide powerful priors for guiding
their behaviors when learning new tasks. This is in stark contrast to what
is common practice in physics-based character animation, where control
policies are most typically trained from scratch for each task. In this work,
we present a large-scale data-driven framework for learning versatile and
reusable skill embeddings for physically simulated characters. Our approach
combines techniques from adversarial imitation learning and unsupervised
reinforcement learning to develop skill embeddings that produce life-like
behaviors, while also providing an easy to control representation for use
on new downstream tasks. Our models can be trained using large datasets
of unstructured motion clips, without requiring any task-specific annota-
tion or segmentation of the motion data. By leveraging a massively parallel
GPU-based simulator, we are able to train skill embeddings using over a
decade of simulated experiences, enabling our model to learn a rich and
versatile repertoire of skills. We show that a single pre-trained model can be
effectively applied to perform a diverse set of new tasks. Our system also
allows users to specify tasks through simple reward functions, and the skill
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embedding then enables the character to automatically synthesize complex
and naturalistic strategies in order to achieve the task objectives.

CCS Concepts: • Computing methodologies→ Procedural animation;
Control methods; Adversarial learning.
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learning, adversarial imitation learning, unsupervised reinforcement learn-
ing
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1 INTRODUCTION
Humans are capable of performing an awe-inspiring variety of com-
plex tasks by drawing on a vast repertoire of motor skills. This
repertoire is built up over a lifetime of interaction with the environ-
ment, leading to general-purpose skills that can be widely reused
to accomplish new tasks. This is at odds with what is conventional
practice in physics-based character animation and reinforcement
learning, where control policies are typically trained from scratch,
to specialize in a single specific task. Developing more versatile and
reusable models of motor skills can enable agents to solve tasks
that would otherwise be prohibitively challenging to learn from
scratch. However, manually constructing a sufficiently rich set of
tasks and reward functions that can give rise to behaviors that are as
diverse and versatile as those of humans would require an immense
engineering effort.
How then can we endow agents with large and versatile reper-

toires of skills? Some inspiration may be drawn from domains such
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as computer vision and natural language processing, where large
expressive models trained on massive datasets have been a central
component of major advances [Brown et al. 2020; Deng et al. 2009;
Doersch et al. 2015; He et al. 2016; Hinton and Salakhutdinov 2006;
Jing and Tian 2021; Kingma and Welling 2014; Mikolov et al. 2013;
Oord et al. 2018a]. Not only can these models solve challenging
tasks, but they also provide powerful priors that can be reused for a
wide range of downstream applications [Brown et al. 2020; Donahue
et al. 2014; Lester et al. 2021; Raffel et al. 2020; Sermanet et al. 2018;
Vinyals et al. 2014]. A similar data-driven paradigm may also be
applicable for developing more general and versatile motor skills.
Rather than laboriously designing a rich set of training tasks that
leads to a flexible range of behaviors, we can instead provide the
agent with a large unstructured motion dataset, containing exam-
ples of behaviors that we would like the agent to acquire. The agent
can then be trained to perform a large variety of skills by imitating
the behaviors depicted in the dataset. By modeling the learned skills
with representations that are suitable for reuse, we may then be
able to develop more capable and versatile motor skill models that
can be re-purposed for a wide range of new applications.

To this end, we present adversarial skill embeddings (ASE), a scal-
able data-driven approach for learning general and reusable motor
skills for physically simulated characters. Given a large dataset of
unstructured motion clips, our system trains a low-level latent vari-
able model to produce behaviors that resemble those shown in the
dataset. Importantly, the learned skills need not exactly match any
particular motion clip. Instead, our pre-training objective encour-
ages the model to learn a diverse set of skills that exhibits the general
behavioral characteristics depicted in the dataset. This is enabled by
an information maximization objective, which spurs the model to
discover diverse and distinct behaviors. Once trained, the low-level
model can then be used to define an abstract action space for a high-
level policy to perform new downstream tasks. By pre-training the
low-level model with motion clips of naturalistic behaviors recorded
from human actors, the model can be used to synthesize agile and
life-like behaviors (see Figure 1), without requiring any additional
motion data or extensive reward engineering.
The central contribution of this work is a scalable adversarial

imitation learning framework that enables physically simulated
characters to acquire large repertoires of complex and versatile
motor skills, which can then be reused to perform a wide range of
downstream tasks. Our system is able to learn behaviors from large
unstructured motion datasets, containing over a hundred diverse
motion clips. By leveraging Isaac Gym, NVIDIA’s massively parallel
GPU simulator, our system is able to pre-train general-purpose
motor skill models using the equivalent of a decade of simulated
experiences. We propose a number of important design decisions
that increases the diversity of the skills acquired during the pre-
training process, and improve the overall effectiveness of the models
when transferred to downstream tasks. Furthermore, by pre-training
the model to recover from random initial states, we can develop
highly robust recovery strategies that can agilely and consistently
recover from substantial external perturbations. Once trained, these
recovery strategies can then be seamless integrated into new tasks,
without any additional algorithmic overhead. Code and data for this
work is available at https://xbpeng.github.io/projects/ASE/.

2 RELATED WORK
Developing controllers that can produce agile and life-like behaviors
has been one of the core challenges of computer animation [Coros
et al. 2010; Hodgins et al. 1995; Raibert and Hodgins 1991; Yin et al.
2007; Zordan and Hodgins 2002]. Optimization techniques, based on
trajectory optimization or reinforcement learning, are some of the
most widely used methods for synthesizing controllers for simulated
characters [de Lasa et al. 2010; Levine and Koltun 2013; Mordatch
et al. 2012; Tan et al. 2014; van de Panne et al. 1994; Yin et al. 2008].
These techniques synthesize controllers by optimizing an objective
function, which encodes properties of a desired skill. While these
methods are able to synthesize physically plausible motions for a
wide variety of behaviors [Al Borno et al. 2013; Endo et al. 2005;
Gehring et al. 2016; Tan et al. 2011; Tassa et al. 2012; Wampler et al.
2014], designing effective objectives that lead to naturalistic mo-
tions can often involve a tedious and labour-intensive development
process. Heuristics derived from prior knowledge regarding the
characteristics of natural behaviors can be incorporated into the
objective in order to improve motion quality, such as enforcing en-
ergy efficiency, lateral symmetry, stability, and many more [Geyer
et al. 2003; Mordatch et al. 2012; Wang et al. 2009; Yu et al. 2018].
However, these heuristics are generally not broadly applicable for
all skills, and different skills often require different carefully curated
sets of heuristics in order to produce life-like behaviors. Incorporat-
ing more biologically accurate simulation models can also improve
motion quality [Geijtenbeek et al. 2013; Jiang et al. 2019; Wang et al.
2012], but may nonetheless produce unnatural behaviors without
the appropriate objective functions [Song et al. 2020].

Data-driven methods: The difficulty of designing controllers and
objective functions that produce naturalistic behaviors has moti-
vated the widespread adoption of data-driven methods for physics-
based character animation [Da Silva et al. 2008; Kwon and Hod-
gins 2017; Lee et al. 2010; Sharon and van de Panne 2005; Xu and
Karamouzas 2021; Zordan and Hodgins 2002]. These techniques can
produce highly life-like motions by imitating reference motion data.
Many of these methods utilize some form of motion tracking, where
controllers imitate reference motions by explicitly tracking the se-
quence of target poses specified by a motion clip [Lee et al. 2010;
Libin Liu 2018; Liu et al. 2016, 2010; Peng et al. 2018; Sok et al. 2007].
However, it can be difficult to apply tracking-based techniques to
imitate behaviors from large and diverse motion datasets. Composi-
tion of disparate skills often requires some form of a motion planner
to select the appropriate motion for the character track in a given
scenario [Bergamin et al. 2019; Liu et al. 2012; Park et al. 2019; Peng
et al. 2017], which can be difficult to construct for complex tasks.
More recently, Peng et al. [2021] proposed adversarial motion priors,
which allow characters to perform tasks while imitating behaviors
from large unstructured motion datasets. This enables characters to
automatically compose and sequence different skills, without being
constrained to explicitly track a particular motion clip. While these
motion imitation methods can produce high quality results, they
predominantly train models from scratch for each task. This tabula-
rasa approach can incur significant drawbacks in terms of sample
efficiency and can limit the complexity of tasks that characters can
accomplish, requiring agents to relearn common behaviors, such
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as walking, over and over again for each new task. Our work aims
to learn reusable motor skills from large motion dataset, which can
then be leveraged to synthesize naturalistic behaviors for new tasks
without requiring additional motion data or retraining from scratch
each time.

Hierarchical models: One way to reuse previously acquired skills
for new tasks is by building a hierarchical model. This approach gen-
erally consists of two stages: a pre-training stage, where a collection
of controllers are trained to specialize in different low-level skills
(e.g., walking in different directions) [Coros et al. 2009; Hausman
et al. 2018; Heess et al. 2016; Liu et al. 2012; Won et al. 2021], and a
task-training stage, where the low-level controllers are integrated
into a control hierarchy with a high-level controller that leverages
the low-level skills to perform new downstream tasks (e.g., navi-
gating to a target location) [Faloutsos et al. 2001; Ling et al. 2020;
Liu and Hodgins 2017; Mordatch et al. 2010; Peng et al. 2017; Ye
and Liu 2010]. General motion tracking models trained to imitate
reference motion data can be used as effective low-level controllers
[Chentanez et al. 2018; Wang et al. 2020; Won et al. 2020]. To apply
these tracking models to downstream tasks, a high-level kinematic
motion planner can be used to specify target motion trajectories for
guiding the low-level controller towards completing a desired task
[Bergamin et al. 2019; Park et al. 2019]. However, constructing such
a motion planner typically requires maintaining a motion dataset
for use on downstream tasks. Latent variable models trained via
motion tracking can obviate the need for an explicit motion planner
by allowing the high-level controller to steer low-level behaviors
via latent variables [Hasenclever et al. 2020; Luo et al. 2020; Lynch
et al. 2020; Merel et al. 2019, 2020; Peng et al. 2019; Wang et al. 2017].
While motion tracking can be an effective method for constructing
low-level controllers, the tracking objective can ultimately limit a
model’s ability to produce behaviors that are not depicted in the
original dataset, thereby potentially limiting a model’s flexibility
to develop more general and versatile skills. In this work, instead
of using motion tracking, we present a more flexible pre-training
approach that combines adversarial imitation learning and unsuper-
vised reinforcement learning, which provides agents more flexibility
in developing novel and versatile behaviors.

Unsupervised reinforcement learning: In the unsupervised rein-
forcement learning setting, agents are not provided with an explicit
task objective. Instead, the goal is for the agent to learn skills au-
tonomously by optimizing an intrinsic objective derived from the
agent’s own past experiences. These intrinsic objectives typically
motivate the agent to seek novelty or diversity, which can be quanti-
fied using surrogate metrics, such as errors from model predictions
[Achiam and Sastry 2017; Burda et al. 2019; Pathak et al. 2017, 2019;
Stadie et al. 2015], state visitation counts [Bellemare et al. 2016;
Florensa et al. 2017; Fu et al. 2017; Strehl and Littman 2008; Tang
et al. 2017], or entropy of the agent’s state distribution [Hazan et al.
2019; Liu and Abbeel 2021b]. In this work, we will leverage a class
of techniques based on maximizing mutual information between
abstract skills and their resulting behaviors [Baumli et al. 2020;
Eysenbach et al. 2019; Gregor et al. 2017; Liu and Abbeel 2021a;
Sharma et al. 2020]. While unsupervised reinforcement learning

has shown promising results on relatively low-dimensional prob-
lems, when applied to more complex settings with large numbers
of degrees-of-freedom, these unsupervised reinforcement learning
techniques often fail to discover useful behaviors. Furthermore,
without additional prior knowledge, it is unlikely that unsupervised
reinforcement learning techniques alone will discover naturalistic,
life-like behaviors that resemble the motions of humans or animals.
Therefore, our models are trained using a combination of an adver-
sarial imitation learning objective and an unsupervised information
maximization objective. Adversarial imitation learning allows our
models to mimic realistic motions from user-provided data, while
unsupervised reinforcement learning techniques allow the model
to learn skill representations that are more directable and mitigate
the common problem of mode-collapse associated with adversarial
training methods by promoting more diverse behaviors.

3 REINFORCEMENT LEARNING BACKGROUND
In our framework, both pre-training and transfer tasks will be mod-
eled as reinforcement learning problems, where an agent interacts
with an environment according to a policy 𝜋 in order to optimize
a given objective [Sutton and Barto 1998]. At each time step 𝑡 , the
agent observes the state s𝑡 of the system, then samples an action
from a policy a𝑡 ∼ 𝜋 (a𝑡 |s𝑡 ). The agent then executes the action,
which leads to a new state s𝑡+1, sampled according to the dynam-
ics of the environment s𝑡+1 ∼ 𝑝 (s𝑡+1 |s𝑡 , a𝑡 ), and a scalar reward
𝑟𝑡 = 𝑟 (s𝑡 , a𝑡 , s𝑡+1). The agent’s objective is to learn a policy that
maximizes its expected discounted return 𝐽 (𝜋),

𝐽 (𝜋) = E𝑝 (𝜏 |𝜋 )

[
𝑇−1∑︁
𝑡=0

𝛾𝑡𝑟𝑡

]
, (1)

where 𝑝 (𝜏 |𝜋) = 𝑝 (s0)
∏𝑇−1
𝑡=0 𝑝 (s𝑡+1 |s𝑡 , a𝑡 )𝜋 (a𝑡 |s𝑡 ) represents the

likelihood of a trajectory 𝜏 = {s0, a0, 𝑟0, s1, ..., s𝑇−1, a𝑇−1, 𝑟𝑇−1, s𝑇 }
under 𝜋 . 𝑝 (s0) is the initial state distribution, 𝑇 denotes the time
horizon of a trajectory, and𝛾 ∈ [0, 1] is a discount factor. The reward
function thus provides an interface through which users can specify
the task that an agent should perform. However, designing effective
reward functions that elicit the desired behaviors from an agent
often involves a tedious design process. Therefore, constructing a
sufficiently rich set of tasks that leads to diverse and sophisticated
motor skills can present a daunting engineering endeavour.

4 OVERVIEW
In this paper, we present adversarial skill embeddings (ASE), a scal-
able data-driven approach for learning reusable motor skills for
physically simulated characters. An overview of our framework is
provided in Figure 2. The training processes consists of two stages:
a pre-training stage, and a task-training stage. During pre-training,
the character is given a dataset of motion clipsM = {𝑚𝑖 }, which
provides examples of the kinds of behaviors that the agent should
learn. Each motion clip𝑚𝑖 = {s𝑖𝑡 } is represented as a sequence of
states that depicts a particular behavior. This dataset is used by
an adversarial imitation learning procedure to train a low-level
skill-conditioned policy 𝜋 (a|s, z), which maps latent variables z to
behaviors that resemble motions shown in the dataset. Unlike most
prior motion imitation techniques [Lee et al. 2010; Liu et al. 2010;
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Fig. 2. The ASE framework consists of two stages: pre-training and transfer.
During pre-training a low-level policy 𝜋 (a |s, z) is trained to map latent skills
z to behaviors that resemble motions depicted in a dataset. The policy is
trained to model a diverse repertoire of skills by using a reward function that
combines an adversarial imitation objective, specified by a discriminator
𝐷 , and an unsupervised skill discovery, specified by an encoder 𝑞. After
pre-training, 𝜋 can be transferred to new tasks by using a task-specific
high-level policy 𝜔 (z |s, g) to specify latent variables z for directing the
low-level policy towards accomplishing a task-specific goal g.

Merel et al. 2020; Peng et al. 2018], our models need not exactly
match any particular motion clip in the dataset. Instead, the objec-
tive is for a policy to discover a diverse and versatile set of skills that
exhibits the general characteristics of the motion data. Then in the
task-training stage, the low-level policy is reused to perform new
tasks by training a task-specific high-level policy 𝜔 (z|s, g), which
specifies latent variables for directing the low-level policy towards
completing the task objectives. The high-level policy is conditioned
on a task-specific goal g, and can be trained without anymotion data.
But since the low-level policy was trained with a motion dataset, it
allows the character to produce naturalistic behaviors even in the
absence of motion data.

5 ADVERSARIAL SKILL EMBEDDINGS
In ASE, the skills are modeled by a skill-conditioned policy 𝜋 (a|s, z),
where each skill is represented by a latent variable z ∈ Z sampled

according to a prior over latent skills z ∼ 𝑝 (z). An effective skill
model should produce realistic behaviors, while also providing a
directable skill representation that can be conveniently utilized to
perform new downstream tasks. This is accomplished by combining
a motion imitation objective with an unsupervised skill discovery
objective, which encourages the agent to develop a set of diverse
skills that conforms to the behavioral characteristics specified by a
dataset of motion clips. Given a motion datasetM, the pre-training
objective is given by:

max
𝜋

−𝐷JS
(
𝑑𝜋 (s, s′)

������𝑑M (s, s′)) + 𝛽 𝐼
(
s, s′; z

��𝜋 ) . (2)

The first term is the imitation objective, which encourages the pol-
icy to produce realistic behaviors by matching the marginal state-
transition distribution of the dataset, where 𝐷JS denotes the Jensen-
Shannon divergence, 𝑑𝜋 (s, s′) represents the marginal distribution
of state transitions induced by 𝜋 , and 𝑑M (s, s′) is the marginal
state-transition distribution of the motion datasetM. Intuitively,
this objective encourages a low-level policy to reproduce the entire
distribution of behaviors from which the motion data were sam-
pled, rather than simply imitating the individual motion clips. An
effective skill embedding, should therefore be able to generalize to
behaviors that are not depicted in the motion clips, but still conform
to the general characteristics of the dataset. The second term is the
unsupervised skill discovery objective, which encourages the policy
to develop a diverse and distinct set of skills by maximizing the
mutual information between a skill z and the resulting behaviors, as
represented by state transitions. 𝛽 is a manually specified coefficient.
This objective encourages the low-level policy to be directable, such
that different values of z leads to distinct and predictable behaviors.
Computing these quantities exactly is generally intractable. In the
following subsections, we will discuss techniques for constructing
a practical approximation of this objective.

5.1 Imitation Objective
Since computing the Jensen-Shannon divergence can be computa-
tionally challenging, we will leverage a variational approximation
in the form of a GAN-like framework [Goodfellow et al. 2014]. First,
we introduce a discriminator 𝐷 (s, s′), which is trained to classify if
a given state transition (s, s′) is from the dataset or was produced
by the agent,

min
𝐷

−E𝑑M (s,s′)
[
log

(
𝐷
(
s, s′

) ) ]
− E𝑑𝜋 (s,s′)

[
log

(
1 − 𝐷

(
s, s′

) ) ]
.

(3)
The policy can then be trained using rewards specified by 𝑟𝑡 =

−log (1 − 𝐷 (s𝑡 , s𝑡+1)). It can be shown that this adversarial train-
ing procedure minimizes the Jensen-Shannon divergence between
𝑑𝜋 (s, s′) and 𝑑M (s, s′) [Ke et al. 2021; Nowozin et al. 2016]. This
objective is similar to the one presented by Peng et al. [2021], and
can be interpreted as training a policy to produce behaviors that
appear to the discriminator as being indistinguishable from motions
shown in the dataset. But unlike Peng et al. [2021], which leverages
a discriminator to shape the behavioral style of policies trained from
scratch for a particular task, our framework utilizes a discrimina-
tor to learn reusable skill embeddings, which can later be used to
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perform new tasks. However, simply matching the behavioral distri-
bution of the data, does not ensure that the low-level policy learns
a directable skill representation that can be effectively reused for
new tasks. In the next subsection, we will present a skill discovery
objective for acquiring more directable skill representations.

5.2 Skill Discovery Objective
The imitation objective encourages the policy to produce behaviors
that resemble the dataset, but it does not ensure that 𝜋 learns a skill
representation that is easy to control and amenable for reuse on
downstream tasks. Furthermore, the adversarial training procedure
described in Section 5.1 is prone to mode-collapse, where the policy
reproduces only a narrow range of behaviors depicted in the origi-
nal dataset. To address these shortcomings, we incorporate a skill
discovery objective, commonly used in unsupervised reinforcement
learning, to encourage the policy to model more diverse and distinct
behaviors. The objective aims to maximize the mutual information
𝐼 (s, s′; z|𝜋) between the state transitions (s, s′) produced by a policy
𝜋 , and a latent skill variable z, drawn from a distribution of skills
z ∼ 𝑝 (z). The intuition for this choice of objective can be made
more apparent if we consider the definition of mutual information,

𝐼 (s, s′; z|𝜋) = H(s, s′ |𝜋) − H (s, s′ |z, 𝜋) . (4)

Maximizing the mutual information can be interpreted as maxi-
mizing the marginal state-transition entropy H(s, s′ |𝜋) induced
by 𝜋 , while minimizing the conditional state-transition entropy
H(s, s′ |z, 𝜋) produced by a particular skill z. In other words, the
policy should learn a set of skills that produces diverse behaviors,
while each individual skill should produce a distinct behavior.

Unfortunately, computing Equation 4 is intractable in most do-
mains. Therefore, we will approximate 𝐼 (s, s′; z|𝜋) using a varia-
tional lower bound presented by Gregor et al. [2017] and Eysenbach
et al. [2019]. But unlike these prior methods, instead of learning a
discrete set of skills, our policy will be trained to model a continuous
latent space of skills, which is more amenable to interpolation and
blending between different behaviors. To derive this objective, we
first note that determining the marginal entropy H(s, s′) is also
generally intractable. A more practical objective can be obtained by
taking advantage of the symmetry of mutual information,

𝐼 (s, s′; z|𝜋) = 𝐼 (z; s, s′ |𝜋) (5)
= H(z) − H (z|s, s′, 𝜋). (6)

This decomposition removes the need to estimateH(s, s′ |𝜋), and
instead we now only need to determine the entropy over skills
H(z). Note that, since we are free to define 𝑝 (z) and it is indepen-
dent of 𝜋 , H(z) is effectively a constant and does not influence
the optimization process. Then, to obtain a tractable approxima-
tion ofH(z|s, s′, 𝜋), we will introduce a variational approximation
𝑞(z|s, s′) of the conditional skill distribution 𝑝 (z|s, s′, 𝜋). Since the
cross-entropy between 𝑝 and 𝑞 is an upper bound on the entropy
of 𝑝 , H(𝑝) ≤ H (𝑝, 𝑞), we obtain the following variational lower
bound on 𝐼 (s, s′; z|𝜋),

𝐼 (s, s′; z|𝜋) = H(z) + E𝑝 (z)E𝑝 (s,s′ |𝜋,z)
[
log 𝑝 (z|s, s′, 𝜋)

]
(7)

≥ max
𝑞
H(z) + E𝑝 (z)E𝑝 (s,s′ |𝜋,z)

[
log 𝑞(z|s, s′)

]
, (8)

where the lower bound is tight if 𝑞 = 𝑝 . We will refer to 𝑞(z|s, s′)
as the encoder. This skill discovery objective encourages a policy to
produce distinct behaviors for each skill z, such that the encoder
can easily recover the z that produced a particular behavior.

5.3 Surrogate Objective
Using the above variational approximations, we can construct a
surrogate objective that approximates Equation 2,

arg max
𝜋

E𝑝 (z)E𝑝 (𝜏 |𝜋,z)

[𝑇−1∑︁
𝑡=0

𝛾𝑡
(
− log (1 − 𝐷 (s𝑡 , s𝑡+1))

+ 𝛽 log 𝑞 (z|s𝑡 , s𝑡+1)
) ]
. (9)

The reward for the policy at each timestep is then specified by

𝑟𝑡 = −log (1 − 𝐷 (s𝑡 , s𝑡+1)) + 𝛽 log 𝑞 (z𝑡 |s𝑡 , s𝑡+1) . (10)

This objective in effect encourages a model to develop a set of dis-
tinct skills, which also produce behaviors that resemble the dataset.
A similar objective was previously proposed by Chen et al. [2016]
for learning disentangled representations for image synthesis with
adversarial generative networks. Similar techniques have also been
applied to acquire disentangled skill representations for imitation
learning [Hausman et al. 2017; Li et al. 2017]. However, these meth-
ods have generally only been effective for low-dimensional systems,
such as driving and simple RL benchmarks, and have not shown
to be effective for more complex domains. Furthermore, the skill
embeddings learned by these prior methods have not been demon-
strated as being effective for hierarchical control. In this work, we
show that our method can in fact learn a rich repertoire of sophisti-
cated motor skills for complex physically simulated characters, and
in the following sections, we propose a number of design decisions
that improve the quality of the resulting motions, as well as allow
the skills to be effectively utilized for hierarchical control.

6 LOW-LEVEL POLICY
Although the method described in Section 5 provides a conceptu-
ally elegant approach for learning skill embeddings, a number of
challenges need to be addressed in order to learn effective skill
representations from large datasets in practice. In this section, we
detail design improvements for training an effective low-level policy
𝜋 (a|s, z), including techniques for preventing low-quality out-of-
distribution samples from the latent space, improving stability dur-
ing training, improving the responsiveness of the low-level policy,
and developing robust recovery strategies that can be seamlessly
integrated into downstream tasks.

6.1 Latent Space
First, we consider the design of the latent space of skills Z and
the prior over skills 𝑝 (z). In GAN frameworks, a common choice
is to model the latent distribution using a Gaussian 𝑝 (z) = N (0, 𝐼 ).
However, this design results in an unbounded latent space, where
latents that are far from the origin ofZ may produce low-quality
samples. Since the latent space will be used as the action space for
a high-level policy 𝜔 (z|s, g), an unboundedZ can lead 𝜔 to select
latents that are far from the origin, which may result in unnatural
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motions. To better ensure high-quality samples, bounded latent
spaces have also been used, where 𝑝 (z) can be modeled with a
uniform distributionU[−1, 1] or a truncated Gaussian [Brock et al.
2019]. In this work, we will model the latent space as a hypersphere
Z = {z : | |z| | = 1} [Karras et al. 2019], and 𝑝 (z) will be a uniform
distribution on the surface of the sphere. Samples can be drawn from
𝑝 (z) by normalizing samples from a standard Gaussian distribution,

z̄ ∼ N (0, 𝐼 ) , z = z̄/| |z̄| |. (11)

This provides the model with a bounded latent space, which can
reduce the likelihood of unnatural behaviors arising from out-of-
distribution latents. As we will discuss in Section 7, this choice of
latent space can also facilitate exploration for downstream tasks.

6.2 Skill Encoder
Since the the latent space is modeled as a hypersphere, the skill
encoder will be modeled using a von Mises-Fisher distribution,

𝑞(z|s, s′) = 1
𝑍

exp
(
^ `𝑞 (s, s′)𝑇 z

)
, (12)

which is the analogue to the Gaussian distribution on the surface
of a sphere. `𝑞 (s, s′) is the mean of the distribution, which must be
normalized | |`𝑞 (s, s′) | | = 1, 𝑍 is a normalization constant, and ^ is
a scaling factor. The encoder can then be trained by maximizing the
log-likelihood of samples (z, s, s′) collected from the policy,

max
𝑞

E𝑝 (z)E𝑑𝜋 (s,s′ |z)
[
^ `𝑞 (s, s′)𝑇 𝑧

]
, (13)

where 𝑑𝜋 (s, s′ |z) represents the likelihood of observing a state tran-
sition under 𝜋 given a particular skill z.

6.3 Discriminator
Adversarial imitation learning is known to be notoriously unstable.
To improve training stability and quality of the resulting motions,
we incorporate the gradient penalty regularizers used by Peng et al.
[2021]. The discriminator is trained using the following objective,

min
𝐷

− E𝑑M (s,s′)
[
log

(
𝐷
(
s, s′

) ) ]
− E𝑑𝜋 (s,s′)

[
log

(
1 − 𝐷

(
s, s′

) ) ]
+𝑤gp E𝑑M (s,s′)

[������∇𝜙𝐷 (𝜙)���𝜙=(s,s′) ������2] , (14)

where𝑤gp is a manually specified coefficient.

6.4 Responsive Skills
When reusing pre-trained skills to perform new tasks, the high-level
policy 𝜔 (z|s, g) specifies latents z𝑡 at each timestep to control the
behavior of the low-level policy 𝜋 (a|s, z). A responsive low-level
policy should change its behaviors according to changes in z. How-
ever, the objective described in Equation 9 can lead to unresponsive
behaviors, where 𝜋 may perform different behaviors depending on
the initial z0 selected at the start of an episode, but if a new latent
z′ is selected at a later timestep, then the policy may ignore z′ and
continue performing the same behavior specified by z0. This lack
of responsiveness can hamper a character’s ability to perform new
tasks and agilely respond to unexpected perturbations.

To improve the responsiveness of the low-level policy, we propose
two modifications to the objective in Equation 9. First, instead of
conditioning 𝜋 on a fixed z over an entire episode, we will instead

construct a sequence of latents Z = {z0, z1, ..., z𝑇−1}, and condition
𝜋 on a different latent z𝑡 at each timestep 𝑡 . The sequence of latents
is constructed such that a latent z is repeated for multiple timesteps,
before a new latent is sampled from 𝑝 (z) and repeated for multi-
ple subsequent timesteps. This encourages the model to learn to
transition between different skills.
To further encourage the model to produce different behaviors

for different latents, we incorporate a diversity objective similar to
the one proposed by Yang et al. [2019] to mitigate mode-collapse
of conditional GANs. These modifications lead to the following
pre-training objective,

arg max
𝜋

E𝑝 (Z)E𝑝 (𝜏 |𝜋,Z)

[𝑇−1∑︁
𝑡=0

𝛾𝑡
(
− log (1 − 𝐷 (s𝑡 , s𝑡+1))

+ 𝛽 log 𝑞 (z𝑡 |s𝑡 , s𝑡+1)
) ]

−𝑤div E𝑑𝜋 (s)Ez1,z2∼𝑝 (z)

[(
𝐷KL (𝜋 (·|s, z1), 𝜋 (·|s, z2))

𝐷z (z1, z2)
− 1

)2
]
,

(15)

with 𝑤div being a manually specified coefficient. The last term is
the diversity objective, which stipulates that if two latents z1 and
z2 are similar under a distance function 𝐷z, then the policy should
produce similar action distributions, as measured under the KL-
divergence. Conversely, if z1 and z2 are different, then the resulting
action distributions should also be different. In our implementation,
the distance function is specified by 𝐷z (z1, z2) = 0.5(1 − z𝑇1 z2),
which reflects the cosine distance between z1 and z2, since the
latents lie on a sphere. This diversity objective is reminiscent of
the loss used in multidimensional scaling [Kruskal 1964], and we
found it to be more stable than the objective proposed by Yang et al.
[2019]. Note, the reward for the policy at each time step depends
only on the encoder 𝑞 and discriminator 𝐷 . The diversity objective
is only applied during gradient updates.

6.5 Robust Recovery Strategies
A common failure case for physically simulated characters is losing
balance and falling when subjected to perturbations. In these situa-
tions, it would be favorable to have characters that can automatically
recover and resume performing a task. Therefore, in addition to
training the low-level policy to imitate behaviors from a dataset, 𝜋 is
also trained to recover from a large variety of fallen configurations.
During pre-training, the character has a 10% probability of being
initialized in a random fallen state at the start of each episode. The
fallen states are generated by dropping the character from the air at
random heights and orientations. This simple strategy then leads to
robust recovery strategies that can consistently recover from sig-
nificant perturbations. By incorporating these recovery strategies
into the low-level controller, 𝜋 can be conveniently reused to allow
the character to automatically recover from perturbations when
performing downstream tasks, without requiring the character to
be explicitly trained to recover from falling for each new task.
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ALGORITHM 1: ASE Pre-Training

1: inputM: dataset of reference motions
2: 𝐷 ← initialize discriminator
3: 𝑞 ← initialize encoder
4: 𝜋 ← initialize policy
5: 𝑉 ← initialize value function

6: while not done do
7: B ← ∅ initialize data buffer
8: for trajectory 𝑖 = 1, ...,𝑚 do
9: Z← sample sequence of latents {z0, z1, ..., z𝑇−1 } from 𝑝 (z)
10: 𝜏𝑖 ← {s0, a0, s1, ..., s𝑇 } collect trajectory with 𝜋 and Z
11: record Z in 𝜏𝑖
12: for time step 𝑡 = 0, ...,𝑇 − 1 do
13: 𝑟𝑡 ← −log (1 −𝐷 (s𝑡 , s𝑡+1)) + 𝛽 log 𝑞 (z𝑡 |s𝑡 , s𝑡+1)
14: record 𝑟𝑡 in 𝜏𝑖
15: end for
16: store 𝜏𝑖 in B
17: end for

18: Update encoder:
19: for update step = 1, ..., 𝑛 do
20: 𝑏𝜋 ← sample batch of 𝐾 transitions {(s𝑗 , s′𝑗 , z𝑗 ) }𝐾𝑗=1 from B
21: update 𝑞 according to Equation 13 using 𝑏𝜋
22: end for

23: Update discriminator:
24: for update step = 1, ..., 𝑛 do
25: 𝑏M ← sample batch of 𝐾 transitions {(s𝑗 , s′𝑗 ) }𝐾𝑗=1 fromM
26: 𝑏𝜋 ← sample batch of 𝐾 transitions {(s𝑗 , s′𝑗 ) }𝐾𝑗=1 from B
27: update 𝐷 according to Equation 14 using 𝑏M and 𝑏𝜋
28: end for

29: update𝑉 and 𝜋 according to Equation 15 using data from B
30: end while

6.6 Pre-Training
Algorithm 1 provides an overview of the ASE pre-training process
for the low-level policy. At the start of each episode, a sequence
of latents Z = {z0, z1, ..., z𝑇−1} is sampled from the prior 𝑝 (z). A
trajectory 𝜏𝑖 is collected by conditioning the policy 𝜋 on z𝑡 at each
timestep 𝑡 . The agent receives a reward 𝑟𝑡 at each timestep, calcu-
lated from the discriminator 𝐷 and encoder 𝑞 according to Equa-
tion 10. Once a batch of trajectories has been collected, minibatches
of transitions (s𝑗 , s′𝑗 , z𝑗 ) are sampled from the trajectories and used
to update the encoder according to Equation 13. The discriminator
is updated according to Equation 14 using minibatches of transi-
tions (s𝑗 , s′𝑗 ) sampled from the agent’s trajectories and the motion
dataset M. Finally, the recorded trajectories are used to update
the policy. The policy is trained using proximal policy optimiza-
tion (PPO) [Schulman et al. 2017], with advantages computed using
GAE(_) [Schulman et al. 2015], and the value function is updated
using TD(_) [Sutton and Barto 1998].

Fig. 3. The unnormalized latent space Z̄ is used as the action space for the
high-level policy 𝜔 . Initializing the action distribution at the origin of Z̄
allows 𝜔 to sample skills uniformly from the normalized latent space Z. By
shifting the action distribution closer or further from the origin of Z̄,𝜔 can
increase or decrease the entropy over skills in the normalized space Z.

7 HIGH-LEVEL POLICY
After pre-training, the low-level policy 𝜋 (a|s, z) can be applied
to downstream tasks by training a task-specific high-level policy
𝜔 (z|s, g), which receives as input the state of the character s and a
task-specific goal g, then outputs a latent z for directing the low-
level policy. In this section, we detail design decisions for improving
exploration of skills and motion quality on downstream tasks.

7.1 High-Level Action Space
When the character is first presented with a new task, it has no
knowledge of which skill will be most effective. Therefore, during
early stages of training, the high-level policy should sample skills
uniformly fromZ in order to explore a diverse variety of behaviors.
As training progresses, the policy should hone in on the skills that
are more effective for the task, and assign lower likelihoods to skills
that are less effective. Our choice of a spherical latent space provides
a convenient structure that can directly encode this exploration-
exploitation trade-off into the action space for the high-level policy.
This can be accomplished by using the unnormalized latents z̄ ∈ Z̄
as the action space for 𝜔 . The high-level policy is then defined as
a Guassian in the unnormalized space 𝜔 (z̄|s, g) = N (`𝜔 (s, g), Σ𝜔 ).
The actions from𝜔 are projected ontoZ by normalizing the actions
z = z̄/| |z̄| |, before being passed to the low-level policy. An illustrative
example of this sampling scheme is available in Figure 3. At the
start of training, the action distribution of 𝜔 is initialized close to
the origin of Z̄, 𝜔 (z̄|s, g) ≈ N (0, Σ𝜔 ), which allows 𝜔 to sample
skill uniformly from the normalized latent space Z. As training
progress, the mean `𝜔 (s, g) can be shifted away from the origin as
needed by the gradient updates, thereby allowing 𝜔 to specialize,
and increase the likelihood of more effective skills. By shifting the
action distribution closer or further from the origin of Z̄, the 𝜔 can
increase or decrease its entropy over skills inZ respectively.
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(a) Simulation Model (b) Visualization Model

Fig. 4. Our framework is used to learn skill embeddings for a 37 degrees-of-
freedom humanoid character, equipped with a sword and shield.

7.2 Motion Prior
While 𝜋 is trained to produce natural behaviors for any latent skill
z, when reusing the low-level policy on new tasks, it is still possible
for𝜔 to specify sequences of latents that lead to unnatural behaviors.
This is especially noticeable when the actions from𝜔 changes drasti-
cally between timesteps, leading the character to constantly change
the skill that it is executing, which can result in unnatural jittery
movements. Motion quality on downstream tasks can be improved
by reusing the discriminator 𝐷 (s, s′) from pre-training as a portable
motion prior when training the high-level policy. The reward for the
high-level policy is then specified by a combination of a task-reward
𝑟𝐺 (s, a, s′, g) and a style-reward from the discriminator, in a similar
manner as Peng et al. [2021],

𝑟𝑡 = 𝑤𝐺 𝑟𝐺 (s𝑡 , a𝑡 , s𝑡+1, g) −𝑤𝑆 log (1 − 𝐷 (s𝑡 , s𝑡+1)) , (16)

with 𝑤𝐺 and 𝑤𝑆 being manually specified coefficients. Note that
the parameters of the discriminator are fixed after pre-training, and
are not updated during task-training. Therefore, no motion data
is needed when training on new tasks. Prior works have observed
that training a policy against a fixed discriminator often leads to
unnatural behaviors that exploit idiosyncrasies of the discriminator
[Peng et al. 2021]. However, we found that the low-level policy 𝜋

sufficiently constrains the behaviors that can be produced by the
character, such that this kind of exploitation is largely eliminated.

8 MODEL REPRESENTATION
To evaluate the effectiveness of our framework, we apply ASE to
develop reusable motor skills for a complex 3D simulated humanoid
character, with 37 degrees-of-freedom. An illustration of the charac-
ter is available in Figure 4. The character is similar to the one used
by Peng et al. [2021], but our character is additionally equipped
with a sword and shield. The sword is attached to its right hand via
a 3D spherical joint, and the shield is attached to its left arm with a
fixed joint. In this section, we detail modeling decisions for various
components of the system.

8.1 States and Actions
The state s𝑡 consists of a set of features that describes the configu-
ration of the character’s body. The features include:
• Height of the root from the ground.

Fig. 5. Network architectures used to model various components of the
system. All networks are comprised of fully-connected layers with ReLU ac-
tivations for hidden layers. The discriminator 𝐷 and encoder 𝑞 are modeled
by the same network with separate output layers.

• Rotation of the root in the character’s local coordinate frame.
• Linear and angular velocity of the root in the character’s local
coordinate frame.
• Local rotation of each joint.
• Local velocity of each joint.
• Positions of the hands, feet, shield, and tip of the sword in
the character’s local coordinate frame.

The root is designated to be character’s pelvis. The character’s local
coordinate frame is defined with the origin located at the root, the
x-axis oriented along the root link’s facing direction, and the y-
axis aligned with the global up vector. The 1D rotation of revolute
joints are encoded using a scalar value, representing the rotation
angle. The 3D rotation of the root and spherical joints are encoded
using two 3D vector corresponding to the tangent u and normal v
of the link’s local coordinate frame expressed in the link parent’s
coordinate frame [Peng et al. 2021]. Combined, these features result
in a 120D state space. Each action a𝑡 specifies target rotations for
PD controllers positioned at each of the character’s joints. Like Peng
et al. [2021], the target rotation for 3D spherical joints are encoded
using a 3D exponential map [Grassia 1998]. These action parameters
result in a 31D action space.

8.2 Network Architecture
A schematic illustration of the network architectures used to model
the various components of the system is provided in Figure 5. The
low-level policy is modeled by a neural network that maps a state
s and latent z to a Gaussian distribution over actions 𝜋 (a|s, z) =
N (`𝜋 (s, z), Σ𝜋 ), with an input-dependent mean `𝜋 (s, z) and a fixed
diagonal covariance matrix Σ𝜋 . The mean is specified by a fully-
connected network with 3 hidden layers of [1024, 1024, 512] units,
followed by linear output units. The value function 𝑉 (s, z) is mod-
eled by a similar network, but with a single linear output unit. The
encoder 𝑞(z|s, s′) and discriminator 𝐷 (s, s′) are jointly modeled by
a single network, with separate output units for the mean of the en-
coder distribution `𝑞 (s, s′) and the output of the discriminator. The
output units of the encoder is normalized such that | |`𝑞 (s, s′) | | = 1,
and the output of the discriminator consists of a single sigmoid unit.
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(a) Sword Swing (b) Shield Bash

(c) Kick (d) Turn

(e) Crouched Walk (f) Jog

Fig. 6. Simulated character performing skills generated by random samples from the latent space. The low-level policy learns to model a diverse array of skills.

The high-level policy 𝜔 (z̄|s, g) = N (`𝜔 (s, g), Σ𝜔 ) is modeled using
2 hidden layers with [1024, 512] units, followed by linear output
units for the mean `𝜔 (s, g). Outputs from the high-level policy spec-
ify unnormalized latents z̄, which are then normalized z = z̄/| |z̄| |
before being passed to the low-level policy 𝜋 . ReLU activations are
used for all hidden units [Nair and Hinton 2010].

9 TASKS
Once a low-level policy has been trained to model a large variety
of skills, it can then be reused to solve new downstream tasks.
The corpus of tasks are designed to evaluate our model’s ability
to perform a diverse array of skills, compose disparate skills in
furtherance of high-level task objectives, and the precision in which
the model can control the character’s movements. We show that
the pre-trained low-level policy enable our characters to produce
naturalistic motions using only simple task-reward functions.

Reach: We start with a simple reach task to evaluate the accuracy
with which themodel can control a character’s low-level movements
for tasks that require more fine-grain precision. The objective for
this task is to position the tip of the sword at a target location x∗.
The goal input for the policy g𝑡 = x̃∗𝑡 records the target location
x̃∗𝑡 in the character’s local coordinate frame. The task-reward is
calculated according to:

𝑟𝐺𝑡 = exp
(
−5

������𝑥∗ − 𝑥sword
𝑡

������2) , (17)

where 𝑥sword
𝑡 denotes the position of the sword tip at timestep 𝑡 . The

target is placed randomly within 1m of the character’s root. This task
represents a form of physics-based data-driven inverse-kinematics.

Speed: To evaluate the model’s ability to utilize different locomo-
tion skills, we consider a target speed task, where the objective is
for the character to travel along a target direction d∗ at a target
speed 𝑣∗. The goal is represented by g𝑡 =

(
d̃∗𝑡 , 𝑣

∗
)
, with d̃∗𝑡 being

the target direction in the character’s local coordinate frame. The

task-reward is calculated according to:

𝑟𝐺𝑡 = exp
(
−0.25

(
𝑣∗ − d∗ · ¤xroot

𝑡

)2
)
, (18)

where ¤xroot
𝑡 is the velocity of the character’s root. The target speed

is selected randomly between 𝑣∗ ∈ [0, 7]m/s.

Steering: In the steering task, the objective is for the character
to travel along a target direction, while facing a target heading
direction h∗. The goal is given by g𝑡 =

(
d̃∗𝑡 , h̃

∗
𝑡

)
, with h̃∗𝑡 being the

local heading direction. The task-reward is calculated according to:

𝑟𝐺𝑡 = 0.7 exp
(
−0.25

(
𝑣∗ − d∗ · ¤xroot

𝑡

)2
)
+ 0.3 h∗ · hroot

𝑡 , (19)

where hroot
𝑡 is the heading direction of the root, and the target speed

is set to 𝑣∗ = 1.5m/s.

Location: In this task, the objective is for the character to move
to a target location x∗. The goal g𝑡 = x̃𝑡 records the target location
x̃𝑡 in the character’s local frame. The task-reward is then given by:

𝑟𝐺𝑡 = exp
(
−0.5

����𝑥∗ − 𝑥root
𝑡

����2) , (20)

with 𝑥root
𝑡 being the location of the character’s root.

Strike: Finally, to evaluate the model’s effectiveness in composing
disparate skills, we consider a strike task, where the objective is
for the character to knock over a target object with its sword. The
episode terminates if any body part makes contact with the target,
other than the sword. The goal g𝑡 = (x̃∗𝑡 , ¤̃x∗𝑡 , 𝑞∗𝑡 , ¤̃𝑞∗𝑡 ) records the
position of the target x̃∗𝑡 , its rotation 𝑞∗𝑡 , linear velocity ¤̃x∗𝑡 , and
angular velocity ¤̃𝑞∗𝑡 . All features are recorded in the character’s local
coordinate frame. The reward is then calculated according to:

𝑟𝐺𝑡 = 1 − uup · u∗𝑡 , (21)

where uup is the global up vector, and u∗𝑡 is the local up vector of
the target object expressed in the global coordinate frame.
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(a) Location (b) Strike

(c) Reach (d) Speed

(e) Steering: Walking Sideways (f) Steering: Walking Backwards

Fig. 7. Simulated character performing tasks using skills from a pre-trained low-level policy. The character can be directed to perform various tasks using
simple reward functions, and the low-level policy then enables the character to achieve the task objectives by using naturalistic behaviors.

(a) Reach (b) Strike
Fig. 8. Policies that are trained from scratch for each task, without using the low-level policy, often develop unnatural behaviors.

10 RESULTS
We evaluate the effectiveness of our framework by using ASE to
develop skill embeddings that enable a complex simulated humanoid
to perform a variety of motion control tasks. First, we show that
ASE can learn a rich latent embedding of diverse and sophisticated
skills from large unstructured motion datasets containing over a
hundred motion clips. Once trained, the learned skill model can
then be reused to perform new tasks in a natural and like-like
manner. Composition of disparate skills emerge automatically from
the model, without requiring intricate reward shaping. Motions
produced by our system are best viewed in the supplementary video.

10.1 Experimental Setup
All environments are simulated using Isaac Gym [Makoviychuk et al.
2021], a high-performance GPU-based physics simulator. During
training, 4096 environments are simulated in parallel on a single
NVIDIA V100 GPU, with a simulation frequency of 120Hz. The low-
level policy operates at 30Hz, while the high-level policy operates at
6Hz. All neural networks are implemented using PyTorch [Paszke
et al. 2019]. The low-level policy is trained using a custom motion
dataset of 187 motion clips, provided by Reallusion [Reallusion 2022].
The dataset contains approximately 30 minutes of motion data that
depict a combination of everyday locomotion behaviors, such as

walking and running, as well as motion clips that depict a gladiator
wielding a sword and shield. The use of a high-performance simula-
tor allows our models to be trained with large volumes of simulated
data. The low-level policy is trained with over 10 billion samples,
which is approximately 10 years in simulated time, requiring about
10 days on a single GPU. A batch of 131072 samples is collected per
update iteration, and gradients are computed using mini-batches
of 16384 samples. Gradient updates are performed using the Adam
optimizer with a stepsize of 2×10−5 [Kingma and Ba 2015]. Detailed
hyperparameter settings are available in Appendix A.

10.2 Low-Level Skills
The ASE pre-training process is able to develop expressive low-
level policies that can perform a diverse array of complex skills.
Examples of the learned skills are shown in Figure 6. Conditioning
the policy on random latents z leads to a large variety of naturalistic
and agile behaviors, ranging from common locomotion behaviors,
such as walking and running, to highly dynamic behaviors, such
as sword swings and shield bashes. All of these skills are modeled
by a single low-level policy. During pre-taining, the motion dataset
is treated as a homogeneous set of state transitions, without any
segmentation or organization of the clips into distinct skills. Despite
this lack of prescribed structure, our model learns to organize the
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Fig. 9. Probabilities of transitioning between different motion clips under various models. Each column represents the probabilities of transitioning from
a source motion to each destination motion. Results are shown for the 50 most frequently matched motion clips. Coverage represents the portion of the
total number of possible transitions that was observed from a model. ASE exhibits denser connections between different motions. Denser connections can
lead to more responsive behaviors and improve a model’s ability to compose different skills when performing new tasks. The number of transitions decrease
drastically when the skill discovery objective (No SD) and the diversity objective (No Div.) are removed.

different behaviors into a structured skill embedding, where each
latent produces a semantically distinct skill, such as sword swings vs.
shield bashes. This structure is likely a result of the skill discovery
objective, which encourages the low-level policy to produce distinct
behaviors for each latent z, such that the encoder can more easily
recover the original z. Changing z partway through a trajectory
also leads the character to transition to different skills. The policy
is able to synthesize plausible transitions, even when the particular
transitions may not be present in the original dataset.

10.3 Tasks
To demonstrate the effectiveness of the pre-trained skill embeddings,
we apply the pre-trained low-level policy to a variety of downstream
tasks. Separate high-level policies are trained for each task, while
the same low-level policy is used for all tasks. Figure 7 illustrates
behaviors learned by the character on each task. ASE learns to model
a versatile corpus of skills that enables the character to effectively
accomplish diverse task objectives. Though each task is represented
by a simple reward function that specifies only a minimal criteria
for the particular task, the learned skill embedding automatically
gives rise to complex and naturalistic behaviors. In the case of the
Reach task, the reward simply stipulates that the character should
move the tip of its sword to a target location. But the policy then
learns to utilize various life-like full-body postures in order to reach
target. The skill embedding provides the high-level policy with fine-
grain control over the character’s low-level movements, allowing
the character to closely track the target, with an average error of
0.088 ± 0.046m. For the Steering task, the character learns to utilize
different forward, backward, and sideways walking behaviors to
follow the target directions. When training the character to move
at a target speed, the policy is able to transition between various
locomotion gaits according to the desired speed. When the target
speed is 0m/s, the character learns to stand still. As the target speed
increases (∼ 2m/s), the character transitions to a crouched walking
gait, and then breaks into a fast upright running gait at the fastest

Fig. 10. Frequencies at which the low-level policy produces motions that
match individual clips in the dataset. Results are shown for the 50 most
frequently matched motion clips. ASE produces diverse behaviors that more
evenly covers the dataset. Without the skill discovery objective (No SD) and
the diversity objective (No Div.), the policy produces less diverse behaviors
and is more prone to collapsing to a single behavior.

speeds (∼ 7m/s). This composition of disparate skills is further
evident in the Strike task, where the policy learns to utilize running
behaviors to quickly move to the target. Once it is close to the target,
the policy quickly transitions to a sword swing behavior in order to
hit the target. After the target has been successfully knocked over,
the character concludes by transitioning to an idle stance.
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Fig. 11. Learning curves comparing performance on downstream tasks using
different low-level policies. We compare ASE to policies that are trained
from scratch for each tasks (Scratch), as well as to low-level policies trained
without the skill discovery objective (No SD), without the diversity objective
(No Div.), and with both objectives disabled (No SD + No Div.). The skill
discovery objective is crucial for learning effective skill representations. The
policies trained from scratch often achieve higher returns by exploiting
unnatural behaviors (see Figure 8)

10.4 Dataset Coverage and Transitions
Learning skill embeddings that can reproduce a wide range of be-
haviors is crucial for building general and reusable skill models.
However, mode-collapse remains a persistent problem for adversar-
ial imitation learning algorithms. To evaluate the diversity of the
behaviors produced by our model, we compare motions produced
by the low-level policy to motions from the original dataset. First,
a trajectory 𝜏 is generated by conditioning 𝜋 on a random latent
z ∼ 𝑝 (z). Then, for every transition (s𝑡 , s𝑡+1) in the trajectory, we
find a motion clip in the dataset𝑚∗ ∈ M that contains a transition
that most closely matches the particular transition from 𝜋 ,

𝑚∗ = arg min
𝑚𝑖 ∈M

min
(s,s′) ∈𝑚𝑖

| |s̄𝑡 − s̄| |2 + ||s̄𝑡+1 − s̄′ | |2 . (22)

Note, s̄ represents the normalized state features of s, normalized
using the mean and standard deviation of state features from the
motion data. This matching process is repeated for every transition
in a trajectory, and the motion clip that contains the most matches
will be specified as the clip that best matches the trajectory 𝜏 . Fig-
ure 10 records the frequencies at which 𝜋 produces trajectories that
matched each motion clip in the dataset across 1000 trajectories.
We compare the distribution of trajectories generated by our ASE
model to an ablated model that was trained without the skill discov-
ery objective (Section 5.2) and the diversity objective (Equation 15).
The ASE model produces a diverse variety of behaviors that more
evenly covers the motions in the dataset. The model trained without
the skill discovery objective and the diversity object produces less
diverse behaviors, where a large portion of the trajectories matched
a single motion clip, corresponding to an idle standing motion.

Table 1. Performance of the different skill models when applied to various
tasks. Performance is recorded as the normalized return, with 0 being the
minimumpossible return per episode, and 1 being themaximum. The returns
are averaged across 3 models using different pre-trained low-level policies,
with 4096 episodes per model. The policies trained from scratch achieve
higher returns on most tasks by utilizing unnatural behaviors.

Task Scratch
No SD

+ No Div. No SD No Div.
ASE
(Ours)

Reach 0.56 ± 0.11 0.18 ± 0.05 0.33 ± 0.05 0.72 ± 0.02 0.75 ± 0.01
Speed 0.95 ± 0.01 0.87 ± 0.01 0.87 ± 0.01 0.93 ± 0.01 0.93 ± 0.01
Steering 0.94 ± 0.01 0.72 ± 0.01 0.74 ± 0.02 0.90 ± 0.01 0.90 ± 0.01
Location 0.67 ± 0.01 0.22 ± 0.04 0.25 ± 0.06 0.47 ± 0.01 0.45 ± 0.01
Strike 0.87 ± 0.01 0.21 ± 0.13 0.50 ± 0.07 0.80 ± 0.02 0.82 ± 0.01

In addition to producing diverse skills, the low-level policy should
also learn to transition between the various skills, so that the skills
can be more easily composed and sequenced to perform more com-
plex tasks. To evaluate a model’s ability to transition between dif-
ferent skills, we generate trajectories by conditioning 𝜋 on two
random latents z𝑆 and z𝐷 per trajectory. A trajectory is then gener-
ated by first conditioning 𝜋 on z𝑆 for 150 to 200 timesteps, then 𝜋

is conditioned on z𝐷 for the remainder for the trajectory. We will
refer to the two sub-trajectories produced by the different latents
as the source trajectory 𝜏𝑆 and the destination trajectory 𝜏𝐷 . The
two sub-trajectories are separately matched to motion clips in the
dataset, following the same procedure in Equation 22, to identify the
source motion𝑚𝑆 and destination𝑚𝐷 . We repeat this process for
about 1000 trajectories, and record the probability of transitioning
between each pair of motion clips in Figure 9. We compare ASE
to models trained without the skill discovery objective (No SD),
without the diversity objective (No Div.), and without both objec-
tives (No SD + No Div.). Coverage denotes the portion of transitions
out of all possible pairwise transitions observed from trajectories
produced by a model

(
coverage = transitions from model

all possible transitions

)
. Our ASE

model generates much denser connections between different skills,
and exhibits about 10% of all possible transitions. Removing the skill
discovery objective and diversity objective results in less responsive
models that exhibit substantially fewer transitions between skills.
To determine the performance impact of these design decisions,

we compare the task performance achieved using various low-level
policies trained with and without the skill discovery objective and
diversity objective. Figure 11 compares the learning curves of the
different models, and Table 1 summarizes the average return of
each model. The skill discovery objective is crucial for learning
an effective skill representation. Without this objective, the skill
embedding tends to produce less diverse and distinct behaviors,
which in turn leads to a significant deterioration in task performance.
While the diversity objective did lead to denser connections between
skills (Figure 9), removing this objective (No Div.) did not seem to
have a large impact on performance on our suite of tasks. For most of
the tasks we considered, the highest returns are achieved by policies
that were trained from scratch for each task. These policies often
utilize unnatural behaviors in order to better maximize the reward
function, such as adopting highly energetic sporadic movements to
propel the character more quickly towards the target in the Location
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Fig. 12. Trajectories of the character’s root produced by random exploration with different action spaces for the high-level policy. Random exploration in the
original action space A does not produce semantically meaningful behaviors, and tends to cause the character to fall after a few timesteps. Our method of
using the unnormalized latent space Z̃ as the action space allows the policy to explore more structured and diverse behaviors. Using the normalized latent
space Z can lead to less diverse behaviors, and a much larger standard deviation is needed for the action distribution to produce similar diversity.

Fig. 13. The low-level policy can consistently recover after falling. The
dataset does not contain motion clips that depict get up behaviors, however
our model still develops plausible recovery strategies.

and Strike tasks. Examples of these behaviors are shown in Figure 8.
Training from scratch also tends to require more samples compared
policies trained using ASE, since the model needs to repeatedly
relearn common skills for each task, such as maintaining balance
and locomotion. ASE is able to achieve high returns on the suite of
tasks, while also producing more natural and life-like behaviors.

10.5 High-Level Action Space
To evaluate the effects of different choices of action space for the
high-level policy, we visualize the behaviors produced by random
exploration in different action spaces. Figure 12 illustrates trajecto-
ries produced by the different action spaces, and the corresponding
motions can be viewed in the supplementary video. First, we con-
sider the behaviors produced by random exploration in the original
action space of the system A. This strategy does not produce se-
mantically meaning behaviors, and often just leads to the character
falling after a few timesteps. Next, we consider behaviors produced
by sampling from a Gaussian distribution in the unnormalized latent
space Z̃, with a standard deviation of 0.1, as described in Section 7.1.
Positioning the Gaussian at the origin of Z̃ allows the policy to

Fig. 14. Time required for the character to get back up after falling when
subjected to random perturbation forces. The low-level policy is able to
consistently recover after falling across 500 trials, requiring an average
recovery time of 0.31s and a maximum of 4.1s.

uniformly sample latents from the normalized latent spaceZ, lead-
ing to a diverse range of behaviors that travel in different direc-
tions. Finally, we have trajectories produced by directly sampling
in the normalized latent spaceZ with various standard deviations
𝜎 = [0.1, 0.2, 0.5]. This sampling strategy limits the policy to select-
ing latents within a local region on the surface of a hypersphere,
which can lead to less diverse behaviors. More diverse behaviors can
be obtained by drastically increasing the standard deviation of the
action distribution. However, a large action standard deviation can
hamper learning, and additional mechanisms are needed to decrease
the standard deviation over time.

10.6 Motion Prior
Reusing the pre-trained discriminator as a motion prior when train-
ing a high-level policy can improve motion quality. The task-reward
function is combined with the style-reward using weights𝑤𝐺 = 0.9
and𝑤𝑆 = 0.1 respectively. A comparison of the motions produced
with and without a motion prior is available in the supplementary
video. Without the motion prior, the character is prone to produc-
ing unnatural jittering behaviors and other extraneous movements.
With the motion prior, the character produces much smoother mo-
tions, and exhibits more natural transitions between different skills.
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10.7 Robust Recoveries
During the pre-training stage, the low-level policy is trained to re-
cover from random initial states, which leads the policy to develop
robust recovery strategies that enable the character to consistent
get back up after falling. These recovery strategies can then be
conveniently transferred to new tasks by simply reusing the low-
level policy. This allows the character to agilely execute recovery
behaviors in order to get up after a fall, and then seamless transition
back to performing a given task. These behaviors emerge automati-
cally from the low-level policy, without requiring explicit training
to recover from perturbations for each new task. Examples of the
learned recovery strategies are available in Figure 13. To evaluate
the effectiveness of these recovery strategies, we apply random per-
turbation forces to the character’s root and record the time required
for the character to recover after a fall. Figure 14 shows the amount
of time needed for recoveries across 500 trials. A force between [500,
1000]N in a random direction is applied for 0.5s to the character’s
root. A fall is detected whenever a body part makes contact with the
ground, excluding the feet. A successful recovery is detected once
the character’s root recovers back to a height above 0.5m and its
head is above 1m. The policy is able to successfully recover from all
falls, with a mean recovery time of 0.31s and a maximum recovery
time of 4.1s. Even though the dataset does not contain any motion
clips that depict get up behaviors, the low-level policy is still able
to discover plausible recovery strategies, such as using its hands to
break a fall and get back up more quickly. However, the character
can still exhibit some unnatural recovery behaviors, such as using
overly energetic spins and flips. Including motion data for more
life-like recovery strategies will likely help to further improve the
realism of these motions.

11 DISCUSSION AND FUTURE WORK
In this work, we presented adversarial skill embeddings, a scal-
able data-driven framework for learning reusable motor skills for
physics-based character animation. Our framework enables charac-
ters to learn rich and versatile skill embeddings by leveraging large
unstructured motion datasets, without requiring any task-specific
annotation or segmentation of the motion clips. Once trained, the
skill embeddings can be reused to synthesize naturalistic behaviors
for a diverse array of downstream tasks. Users can specify tasks
through simple high-level reward functions, and the pre-trained
low-level policy then allows the character automatically utilize and
compose life-like behaviors in furtherance of the task objectives.
Our system demonstrates that large scale adversarial imitation

learning can be an effective paradigm for developing general-purpose
motor skill models for a wide range of sophisticated behaviors. How-
ever, like many GAN-based techniques, our training procedure for
the low-level policy is still prone to mode-collapse. While the skill
discovery objective can greatly improve the diversity of behaviors
learned by the model, the policy still cannot fully capture the rich
variety of behaviors depicted in a large motion dataset. Exploring
techniques to mitigate mode-collapse could lead to more expres-
sive and versatile skill embeddings that enable characters to tackle
more complex tasks, as well as to synthesize more graceful and
agile behvaiors. The ASE objective detailed in Section 5 provides

a general pre-training objective, where different approximations
can be used for each component. We proposed using a GAN-based
approximation for the distribution matching objective, and a partic-
ular variational approximation for the mutual information objective.
Alternative approximations can be used, such as flow models [Dinh
et al. 2017], diffusion models [Sohl-Dickstein et al. 2015], and con-
trastive predictive coding [Oord et al. 2018b], which can present
trade-offs that provide a rich design space for future exploration.
While our model is able to perform a large array of skills, the down-
stream tasks that we have explored in our experiments are still
relatively simple. Applying ASE to more challenging tasks in com-
plex environments that require composition of a wider array of
skills will help to better understand the capabilities of these models.
While our framework is able to leverage massively parallel simu-
lators to train skill embeddings with years of simulated data, this
process is highly sample intensive compared to the efficiency with
which humans can explore and acquire new skills. We would be
interested in exploring techniques that can better replicate the skill
acquisitions of humans, which may improve the efficiency of the
training process and further enhance the capabilities of the acquired
skills. Finally, the low-level policy can still occasionally produce
unnatural motions, such as jittering, sudden jerks, and overly ener-
getic recovery behaviors. We are interested in exploring methods
to mitigate these artifacts and further improve the realism of the
generated motions, such as incorporating motion data for natural
recovery strategies and integrating energy efficiency objectives into
the pre-training stage [Peng et al. 2021; Yu et al. 2018]. Despite these
limitations, we hope this work will help pave the way towards de-
veloping large-scale and widely reusable data-driven control models
for physics-based character animation.
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A HYPERPARAMETERS
Hyperparameter settings used during pre-training of the low-level
policy are available in Table 2, and the hyperparameters for task-
training of the high-level policy are available in Table 3. During
pre-training, the trajectories are generated by conditioning the low-
level policy 𝜋 on a random sequence of latents Z = {z0, z1, ..., z𝑇−1}
sampled according to 𝑝 (z). The sequence of latents is constructed
such that a latent z is repeated for multiple timesteps, before a new
latent is sampled from 𝑝 (z) and repeated for multiple subsequent
timesteps. Each latent is kept fixed for between 1 and 150 timesteps
before being changed. During task-training, the high-level policy
is queried at 6Hz, while the low-level policy operates at 30Hz. The
latents specified by the high-level policy is therefore repeated for 5
steps for the low-level policy. This can help improve motion quality
by lowering the rates at which the high-level policy can change the
skill being executed by the low-level policy, reducing the prevalence
of unnatural jittery behaviors.

Table 2. ASE hyperparameters for training low-level policy.

Parameter Value
dim(Z) Latent Space Dimension 64
Σ𝜋 Action Distribution Variance 0.0025
𝛽 Skill Discovery Objective Weight 0.5
𝑤gp Gradient Penalty Weight 5
𝑤div Diversity Objective Weight 0.01
^ Encoder Scaling Factor 1
Samples Per Update Iteration 131072
Policy/Value Function Minibatch Size 16384
Discriminator/Encoder Minibatch Size 4096
𝛾 Discount 0.99
Adam Stepsize 2 × 10−5

GAE(_) 0.95
TD(_) 0.95
PPO Clip Threshold 0.2
𝑇 Episode Length 300

Table 3. ASE hyperparameters for training high-level policy.

Parameter Value
𝑤𝐺 Task-Reward Weight 0.9
𝑤𝑆 Style-Reward Weight 0.1
Σ𝜋 Action Distribution Variance 0.01
Samples Per Update Iteration 131072
Policy/Value Function Minibatch Size 16384
𝛾 Discount 0.99
Adam Stepsize 2 × 10−5

GAE(_) 0.95
TD(_) 0.95
PPO Clip Threshold 0.2
𝑇 Episode Length 300
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